技术

Agent调优 Agent评估 OS Agent Agent与软件开发 提升Agent能力——上下文工程 llm评测 rl微调 分布式Agent与A2A deepresearch梳理 mcp学习 SSE 和 WebSocket 是什么? AutoGen学习 Python ioc 从0到1构建一个db 上下文记忆——AI Agent native 的任务存储机制 线性RAG的进化——agentic rag 图数据库的一些考量 推理LLM梳理 Agent演进 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 另一种微服务架构Multi-Agent Python虚拟机 LangGraph工作流编排 Python实践 增强型LLM——Agent 激发LLM涌现——提示工程 LLM微调理论 大佬谈LLM LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

rl与sft 大模型infra综述 OpenTelemetry及生态 大模型可观测性 grpo演进 rlhf演进 agent框架 reward演进 大模型RLHF框架 大模型rl后训练系统 GPU与CUDA RL闲谈 MCTS与LLM rl与post-train rl入门 从Transformer到DeepSeek bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 语言模型的发展 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 对序列建模——从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
Agent调优 Agent评估 OS Agent rl与sft 大模型infra综述 Agent与软件开发 提升Agent能力——上下文工程 llm评测 大模型可观测性 rl微调 grpo演进 rlhf演进 agent框架 分布式Agent与A2A reward演进 deepresearch梳理 mcp学习 大模型RLHF框架 大模型rl后训练系统 GPU与CUDA RL闲谈 MCTS与LLM rl与post-train rl入门 AutoGen学习 从Transformer到DeepSeek 上下文记忆——AI Agent native 的任务存储机制 线性RAG的进化——agentic rag bert rerank微调 大模型推理tips 推理LLM梳理 Agent演进 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 另一种微服务架构Multi-Agent LangGraph工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 增强型LLM——Agent 激发LLM涌现——提示工程 LLM微调理论 大佬谈LLM LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 语言模型的发展 AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 对序列建模——从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

Agent调优

2025年11月27日

简介(未整理)

BFCL 评测评估模型 Agent 能力。PS:llm 作为agent 使用时,选择工具的能力(结构化输出json);制定计划;识别问题是否充分回答;对特定工具的使用(网络检索、代码解释器等)是否得心应手。

模型AgentTuning

当前基于强化学习的智能体(LLM Agents)仍面临两大核心瓶颈:

  1. 单任务与单轮限制 —— 现有 RLHF 或 RLVR 方法多停留在单步决策层面,无法应对多轮环境交互与复杂任务调度;
  2. 缺乏统一的多任务基础设施 —— 不同任务环境接口异构,导致模型无法在多任务场景下稳定训练或高效迁移。

AgentLM:能打的 Agent 模型来了!开源模型并非没有完成智能体任务的能力,可能只是在智能体任务上缺乏对齐。对于 Agent 能力提升的策略,现有许多工作多使用 Prompt / 微调方法优化模型,在单项智能体任务上取得了卓越的表现,但智能体任务之间的促进及泛化效果有待进一步探索。智谱AI&清华KEG提出了一种对齐 Agent 能力的微调方法 AgentTuning,该方法使用少量数据微调已有模型,显著激发了模型的 Agent能力,同时可以保持模型原有的通用能力。AgentTuning 主要包括 2 个阶段。首先,我们收集并过滤得到一个多任务指令微调数据集 AgentInstrcut;然后,我们将 AgentInstruct 数据集与通用数据对模型进行混合微调。评估结果表明,AgentTuning 能让 LLM 的 Agent 能力在未见过的 Agent 任务中展现出强大的泛化,同时保持良好的通用语言能力。AgentInstruct 是一个经过筛选的智能体任务数据集。其包含 6 项智能体任务,从 Shell 交互到数据库操作,平均回合数从 5 到 35 不等,每条轨迹都有 ReAct 形式的 CoT 标注,帮助模型深入理解决策过程。PS: 大家发现Agent/react 有用,就微调LLM强化这方面的能力。

大模型Agent RL训练多轮planning技术DeepSeek R1带火基于GRPO的强化学习技术后,agentic tool use learning也开始用上了GRPO,Reinforce++, PPO, policy gradient等各种算法了(以前是SFT+DPO,需要大量的标注数据来cover bad case,当时标注高质量数据都把我标哭了),想让大模型学会使用code interpreter, web search等工具来增强现有模型的数学和推理能力, 单轮就是调用一次tool,多轮就是调用多次tools, 多轮tool use更难一点,主要是数据难以获取和建模方式(MDP这种只考虑当前状态的训练模式,还是使用full history,考虑所有的状态的模式)不清晰,tool-use rl也算是一个新的研究方向了,潜力还有待挖掘。最近的工作还是集中设计这个multi turn tool-use的prompt template,以及训练的时候需要设计rule based reward(correctness reward, format reward, tool execcution rewad等), 训练的tool output的mask操作,sampling的时候加入异步并行,融入megatron的pipeline parallel,加入多模态信息等等,训练的范式基本是先收集一波expert trajectory做sft,然后使用rl训练(例如ReTool),或者直接应用RL(例如TORL,ToolRL,OTC等),目前还没有出现一个真正为agent rl设计的方法,都是复用现有的基建(比如verl, open-rlhf, trl, ms-swift),做了一些拓展。最近在tool-use的基础上还出现了一个tool integrated reasoning, 跟cot的区别就是在推理的过程中会使用工具,这样推理过程动态的添加了search,code,各种定制化的API的输入,推理能力得到了进一步的增强。

工程调优

使用langchain中自带的react框架进行text2api的构造,发现几个问题:

  1. langchain完全依赖底座模型,在chatgpt4上表现很好。但在一些中文模型上无法很好识别api的输入参数,经常出现幻觉导致乱编参数的现象。
  2. langchain调用链路很长,导致我们在改写较复杂问题text2api的时候会有大量的工作。并且react框架因为没有penalty机制,如果出现调用错误的情况,只能人工检查然后通过增强prompt的方式进行修正。 后来我们尝试引进了Reflexion框架,相较于传统的Reactor,Reflexion提供了自我反思机制,然后在memory模块中保存之前的短期记忆和长期记忆,从而在之后的决策中,基于储存的记忆诱导大模型生成更好的答案。

Agent模型

DeepResearch模型是如何被训练出来的?

Agent的增强训练究竟需要增强什么?

  1. 对研究人员和一般开发者的一个问题是,目前的开源推理模型的工具使用能力、特别是多轮工具使用能力普遍较弱。PS:后续就是,推理+多模态,推理+functioncall(plan 相对内置)等等,从工程上可能喜欢plan单独输出,进而可以人工矫正(进而持续训练),保证输出质量。
  2. 规划

Agent 模型是在推理模型基础上通过端到端的面向任务的工具增强训练得到的。它能够自动生成耦合的CoT思维链和CoA行动链序列。其中每个动作调用工具与外部环境交互,交互得到的反馈指导后续的推理和动作,直至任务完成。Agent 模型增强了使用工具的能力,这要求模型不局限于自身内部的推理行为,而能与外部环境进行交互。Chatbot和Reasoner仅关注人与模型之间的二元交互。而Agent 模型要求能够同时进行思考与行动,形成了由人、模型和环境构成的三元结构:使用工具与环境进行交互以获得反馈,经过多轮的思考、行动和observation后,最终生成回复。PS:其实也说明,调用工具场景能用functioncall 模型就用functioncall模型,常规llm也不是不行,但不专业。

这里有个问题:如果模型在预训练阶段已经具备了工具使用能力,并继承到了推理模型中,还需要进行专门的CoA学习么?即CoT+A是否可以自然地获得CoA的能力?当预训练基座模型的工具使用能力和推理模型的推理能力较强时,这是有可能的。讨论更一般的情况:预训练阶段的工具使用更多的关注的还是单步行动能力,适合处理孤立的任务,有点像对特定技能的学习;而CoA学习面向任务执行端到端训练,学会执行一连串相互依赖的动作,形成逻辑性强、目标导向的行动序列,更像是对技能的综合应用。以OpenAI的Deep Research为例:其核心能力是通过网络搜索完成复杂研究任务,就需要解决上面两个问题:

  1. 知识边界的判断:模型需要自主判断“什么时候该查资料”——既不能过度依赖搜索,也不能盲目自信;需要清楚自己的短板,并在合适的时候采取行动
  2. 动态环境的适配:调用搜索引擎要花时间和资源,成本高、效率低,而且网络环境一直在变,如何在有外部环境交互的情况下进行高效RL训练?

真正的LLM AgentAlexander:未来智能体会自主掌控任务执行的全过程,包括动态规划搜索策略、主动调整工具使用等,而不再依靠外部提示/prompt或工作流驱动( 真正的智能体,是不靠「提示词」工作的)。这种转变意味着智能体设计的核心复杂性将转移到模型训练阶段,从根本上提升模型的自主推理能力,最终彻底颠覆目前的应用层生态。AI 模型本身,就是未来的产品。为什么这么说?

  1. 通用型模型的扩展,遇到了瓶颈。GPT-4.5 发布时传递的最大信息就是:模型的能力提升只能呈线性增长,但所需算力却在指数式地飙升。尽管过去两年 OpenAI 在训练和基础设施方面进行了大量优化,但仍然无法以可接受的成本推出这种超级巨型模型。
  2. 定向训练(Opinionated training)的效果,远超预期。强化学习与推理能力的结合,正在让模型迅速掌握具体任务。这种能力,既不同于传统的机器学习,也不是基础大模型,而是某种神奇的第三形态。比如一些极小规模的模型突然在数学能力上变得惊人强大;编程模型不再只是简单地产生代码,甚至能够自主管理整个代码库;又比如 Claude 在几乎没有专门训练、仅靠非常贫乏的信息环境下,竟然也能玩宝可梦。
  3. 推理(Inference)的成本,正在极速下降。DeepSeek 最新的优化成果显示,目前全球所有可用的 GPU 资源,甚至足以支撑地球上每个人每天调用一万个顶尖模型的 token。而实际上,目前市场根本不存在这么大的需求。简单卖 token 赚钱的模式已经不再成立,模型提供商必须向价值链更高层发展。 未来 2-3 年内,所有闭源 AI 大模型提供商都会停止向外界提供 API 服务,而将转为直接提供模型本身作为产品。简单来说,API 经济即将走向终结。模型提供商与应用层(Wrapper)之间原本的蜜月期,已彻底结束了。未来很多最赚钱的 AI 应用场景(如大量仍被规则系统主导的传统产业)尚未得到充分开发。谁能训练出真正针对这些领域的专用模型,谁就能获得显著优势。

RFT/Reinforcement Fine-Tuning

RFT 只是 PPO 技术范式下的一个新应用范式。它本身并不是一个全新的技术范式,

RFT 就是针对给定 prompt,产生一些包含 cot 的 response ,再通过一个 verifier 来判断 response 是否正确,作为信号来指导模型进行参数更新。抛开 cot 过程不谈,如果我们把这套流程的 verifier 换成 reward_model ,这个流程看上去是不是感到很熟悉? —— 那就是最传统的基于 PPO 的 RLHF。RFT 和 RLHF 唯一的区别就是,它的 return (reward 信号) 是通过 verifier 算出来的,而不是一个 reward_model 计算出来的。verifier 本身则可以看成是一个 rule,比如 math 任务的答案是否正确,code 任务的代码是否能执行 …… 因此, RFT = PPO + rule_based reward_model。至于 RFT 的技术难点,我个人认为和 o1 的技术难点完全 match:高质量 cot 的生产与高准确率 verifier 的获取。

RFT 的价值:只要能定制好一个任务的 verifier,那么 RFT 便可以在这个新的领域场景,以十分之一或更少的数据,轻松超过 SFT 的结果。当然,用 PPO 训练模型能带来的所有收益也都是 RFT 的优点,这里就不赘述了。介绍中还提到,RFT 擅长解决法律、保险、医疗、金融和工程领域等任务,而这些任务通常有明确的“正确答案”。是因为 RFT 只适合答案固定的场景吗?不是,仅仅是因为答案固定的场景 verifier 非常容易制定。Sam Altman 在直播中认为 RFT 是 2024 最牛的技术进展,能帮助大家搞定专业模型的训练。说的没错,RFT 在大模型应用方向确实是划时代的,因为它真的能帮 OpenAI 卖更多的定制化服务。LLM 从业者们也能从中些许受益,掌握了 RFT 技术后,以后老板再提出做一个新的应用模型,我们就不需要再枯燥的标注大量的 SFT 数据,而是花一点时间训个 verifier 即可

字节的 ReFT 可以看作是 OpenAI 的 RFT 在数学任务上的一个极简版实现方案

  1. SFT 得到一个较好的模型;
  2. 给定 prompt,do_sample 多次,生成一些带 cot 的 response;
  3. 答案正确,1 分;答案错误,0.1 分;提取不到答案(说明没有 follow 输出格式),0分;
  4. 根据 returns 更新模型。

ReFT 这篇论文,好就好在它是在 o1 之前发表的。因为 o1 的出现,“cot 的推理过程,MCTS 采样,PRM,ORM,rule-based reward_model” 等概念,已经在 LLM 圈深入人心了。

与agent 融合/agent rft/multi-agent plan/route

Agent RFT根据你指定的学习信号改变模型权重,教会模型什么是好的行为、什么是不够好的行为。在训练过程中,Agent会探索调用工具的各种方式,学习如何随着训练不断改进。基础RFT(很多事single step rl)不适合fine-tune Agent,Agent RFT(multi-step rl, external reward signal,对模型使用的工具/token数量施加了轻微的惩罚)允许Agent在rollout过程中调用工具,从使用工具的所有可能方式中学习。

  1. 训练模型更好地对工具输出进行推理
  2. 训练模型更好地使用工具。
  3. 通过调用工具endpoints,以及通过endpoint形式指定grader(调用它来获取你的自定义reward signal),允许模型在训练过程中与外部世界交互。当输出最终答案并调用grader时,通过唯一标识符将Agent的所有上下文附加到最终答案上,然后将所有这些信息传入grader,获得非常全面的评分上下文。PS: 也就是你有机会在客户现场跑一次rft

Multi-Agent 的灵活编排之路 案例,multiagent 背景下,训练plannning 模块生成plan(每一个step 是一个选中agent及其要解决的问题)

无干预,短思考,多行动:新的Multi-step LLM+RL范式在R1提出后我一直在想,这种在post-train阶段reasoning trace一直变长的现象是否是个好事。由于single-step RL任务往往是完全信息的bandit问题,模型的reasoning trace越来越长我觉得是很好理解的,因为更长的reasoning可以反复重构问题中的信息达到与pretrain阶段最匹配的token分布。但是世界上的大部分现实问题都是multi-step的,也就是说需要很多步decision的sequential impact才会拿到最后的reward,这明显用multi-step MDP去model更加合理。我坚信真正的智能必须能够解决multi-step的问题。做出一个decision后agent其实获得了新的信息,而这些新的信息对于最后的成败至关重要。在获得能够决定最后成败的新的信息前,agent不应该给出答案。而找这些信息往往并不需要过多的reasoning,都是非常简单的事情。这就是我们近期工作的核心思想。通过一种新的post-train算法,我们希望得到的model具有三个我们所期待的性质:无干预,短思考,多行动。

从「会说」迈向「会做」,LLM下半场:Agentic强化学习范式综述早期 RL 研究多基于 PBRFT 范式(输入提示、输出文本、获得一个偏好分数),可被视为退化的单步 MDP(单 prompt、一次性文本输出、立即终止),而 Agentic RL 则将 LLM 置于部分可观测马尔可夫决策过程(POMDP)下进行多步交互,其中关键变化在于动作空间从单一文本扩展为「文本 + 操作」(A_text => A_text + A_action);同时奖励从「单步评分」扩展为「时序反馈」,优化整条决策轨迹,把 LLM 从「文本生成器」推进为可交互的决策体。要让 LLM 真正成为智能体,仅有动作空间还不够,它必须发展出一套完整的能力体系。

  1. 规划(Planning):为复杂任务设定子目标与多步行动序列。通过外部引导(外部打分生成奖励)或内部驱动(自主规划并修正)实现。
  2. 工具使用(Tool Use):调用外部工具完成任务。从 ReAct 等静态提示模仿演进到 Tool-integrated RL (TIR),让智能体学会自主选择组合工具。
  3. 记忆(Memory):保持上下文连贯并积累知识,包括基于外部数据库检索记忆、Token 级别记忆和结构化记忆。中,值得关注的工作包括来自字节跳动的 MemAgent 和麻省理工大学的 MEM1,他们都通过强化学习让 LLM Agent 拥有自行管理记忆窗口的能力。
  4. 自我改进(Self-Improvement)同样是目前 Agent 最热门的发展方向。
  5. 推理(Reasoning):解决复杂问题的推导能力,分为快速直觉推理(凭经验直觉迅速答题)和慢速缜密推理(多步演绎得出严谨结论)。
  6. 感知(Perception):理解多模态输入的信息获取能力。 借助强化学习,这些能力由人工启发式转变为可学习的策略,规划不再依赖硬编码流程、工具使用也可由模型自主决定、端到端训练。