技术

go 内存管理 golang 系统调用与阻塞处理 图解Goroutine 调度 重新认识cpu mosn有的没的 负载均衡泛谈 《Mysql实战45讲》笔记 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes垂直扩缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubernetes crd 及kubebuilder学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


rxjava2——线程切换

2018年07月31日

简介

对rxjava 有一个简单的学习之后,笔者还是很难 理解rxjava 在服务端的使用,感觉学习了hystrix 之后,这块的理解会更深刻一些。

首先对于同步调用,rxjava的作用有限,而对于异步调用,对于类似于netty这种 方法直接返回future的,rxjava也套不上。其所谓异步调用,通常是另起 线程执行一个同步调用(从驱动线程的角度看,这就是一个异步调用了),由此成为一个多线程代码,解决多线程环境下的 数据流控制问题。

线程切换

线程控制绝对是RxJava的重点之一。在不指定线程的情况下,RxJava遵循的是线程不变的原则,在哪个线程调用subscribe(),就在哪个线程生产、消费事件。

线程控制的 本质 还是 将 当前 Observable 转换为 另一个Observable,具体的说是转换Observable的onSubscribe 方法,跟filter 等普通的数据转换一样一样的。明面上是线程切换,其实是函数 包装。

public Observable<T> observeOn(Scheduler scheduler) {
    return observeOn(this, scheduler);
}
public Observable<T> subscribeOn(Scheduler scheduler) {
    return subscribeOn(this, scheduler);
}
public Observable<T> filter(Func1<T, Boolean> predicate) {
    return filter(this, predicate);
}

谜之RxJava (三)update 2 —— subscribeOn 和 observeOn 的区别

笔者最早找到 支持observeOn 的版本0.10.0

从0.10.0 可以看到,无论是observeOn 还是subscribeOn,参数都是Scheduler,都会导致 代码切换到 另一个线程(由Scheduler 实现类决定)执行。只是observeOn 只是 表示 其之后的操作,由observeOn 指定的Scheduler执行。subscribeOn 则是 之前及之后的操作 都由subscribeOn 指定的Scheduler 执行,直到遇到observeOn。

subscribeOn

Func1<Observer<T>, Subscription> 叫 onSubscribe,Subscribe 是 Subscribe ,别弄混onSubscribe和Subscribe。

public static <T> Func1<Observer<T>, Subscription> subscribeOn(Observable<T> source, Scheduler scheduler) {
    return new SubscribeOn<T>(source, scheduler);
}

private static class SubscribeOn<T> implements Func1<Observer<T>, Subscription> {
    private final Observable<T> source;
    private final Scheduler scheduler;

    public SubscribeOn(Observable<T> source, Scheduler scheduler) {
        this.source = source;
        this.scheduler = scheduler;
    }

    @Override
    public Subscription call(final Observer<T> observer) {
        return scheduler.schedule(new Func0<Subscription>() {
            @Override
            public Subscription call() {
                return new ScheduledSubscription(source.subscribe(observer), scheduler);
            }
        });
    }
}

Observable.subscribeOn 的逻辑链条,根据 当前Observable 和 scheduler 创建一个新的 Func1<Observer<T>, Subscription> onSubscribe (学名叫subscribeOn )并基于此创建新的 Observable。 转换 onSubscribe 过程涉及到 几个Subscription 的转换

  1. 当前 Observable.subscribe(observer) 返回 Subscribe
  2. 将 Subscribe 封装为 ScheduledSubscription
  3. 将 ScheduledSubscription 封装为 SafeObservableSubscription

以NewThreadScheduler 为例

Observable.filter()				
			.map1()		
			.subscribeOn(NewThreadScheduler)
			.map2()
			.subscribe(xx)

以filter操作为例

// class Observable
public Observable<T> filter(Func1<T, Boolean> predicate) {
    return filter(this, predicate);
}
public static <T> Observable<T> filter(Observable<T> that, Func1<T, Boolean> predicate) {
    return create(OperationFilter.filter(that, predicate));
}
// class OperationFilter
public static <T> Func1<Observer<T>, Subscription> filter(Observable<T> that, Func1<T, Boolean> predicate) {
    return new Filter<T>(that, predicate);
}
  	private static class Filter<T> implements Func1<Observer<T>, Subscription> {
    private final Observable<T> that;
    private final Func1<T, Boolean> predicate;
    public Filter(Observable<T> that, Func1<T, Boolean> predicate) {
        this.that = that;
        this.predicate = predicate;
    }
    public Subscription call(final Observer<T> observer) {
        ...
     	that.subscribe(new Observer<T>() {
            public void onNext(T value) {
                try {
                    if (predicate.call(value)) {
                        observer.onNext(value);
                    }
                } catch (Throwable ex) {
                    observer.onError(ex);
                    ...
                }
            }
            public void onError(Throwable ex) {
                observer.onError(ex);
            }
            public void onCompleted() {
                observer.onCompleted();
            }
        });
        ...
    }
}
  1. filter 时的 Observable 和 最后 subscribe 当时的 Observable 已经不是同一个了。filter 时的observer 是 new 出来的,跟最后subscribe 方法参数的 observer 也不是同一个。

    动作 源Observable 对应observer
    filter Observable observer3.onNext
    map1 Observable1 observer2.onNext
    subscribeOn Observable2 observer1.onNext 只是异步驱动了一下
    map2 Observable3 observer1.onNext
    subscribe Observable4 observer.onNext

    rxjava 通过封装,只将原始的Observable 和 observer 暴露给了用户。

  2. 下一个Observable 简介持有 上一个 Observable 的引用
  3. 最新的Observable4.subscribe 驱动整个逻辑 开始 执行,具体的说 是驱动 其对应的Func1<Observer<T>, Subscription> 的执行。
  4. Observable4.subscribe 实现是 Observable4. onSubscribe.call ,方法执行链条为

     Observable4.subscribe ==>  
     Observable4.onSubscribe.call ==> 	
     Observable3.subscribe ==> 
     Observable3.subscribeOn.call ==> 驱动线程执行完毕,切换thread 
     Observable2.subscribe ==> 
     Observable2.onSubscribe.call ==> 
     Observable1.subscribe ==> 
     Observable1.onSubscribe.call ==> 
     Observable.subscribe ==> 
     Observable.onSubscribe.call ==> 
         observer3.onNext1,onNext2,onCompleted ==> 
         filter ==> 
         observer2.onNext1,onNext2,onCompleted ==> 
         ...
         observer.onNext1,onNext2,onCompleted
    

对于这个方法执行链

RxJava for 100% beginners (part3-switching threads)subscribeOn() change the thread for emitting the source Observable’s elements, no matter where you put it in your “chain”.

用一张图解释RxJava中的线程控制 则将这个方法链分为两个阶段

  1. 驱动阶段,从下游到上游,反向驱动
  2. 事件发射阶段。第一个Observable开始产生事件,然后事件流就开始正向传递

这也就解答了笔者的一个疑惑,为什么subscribeOn 放在任何位置 对“副作用函数” 都有效?因为线程的切换 在事件驱动阶段,而副作用函数的执行 在事件发射阶段。

observeOn

以下列代码为例

Observable.filter()				
			.map1()		
			.observerOn(NewThreadScheduler)
			.map2()
			.subscribe(xx)

分析下 ObserveOn 源码

// OperationObserveOn
   	public static <T> Func1<Observer<T>, Subscription> observeOn(Observable<T> source, Scheduler scheduler) {
    return new ObserveOn<T>(source, scheduler);
}

private static class ObserveOn<T> implements Func1<Observer<T>, Subscription> {
    private final Observable<T> source;
    private final Scheduler scheduler;

    public ObserveOn(Observable<T> source, Scheduler scheduler) {
        this.source = source;
        this.scheduler = scheduler;
    }

    @Override
    public Subscription call(final Observer<T> observer) {
        if (scheduler instanceof ImmediateScheduler) {
            // do nothing if we request ImmediateScheduler so we don't invoke overhead
            return source.subscribe(observer);
        } else {
            return source.subscribe(new ScheduledObserver<T>(observer, scheduler));
        }
    }
}

分析Observable 与 observer 的 变换

动作 源Observable 对应observer
filter Observable observer4.onNext
map1 Observable1 observer3.onNext
subscribeOn Observable2 observer2.onNext 变成了ScheduledObserver
map2 Observable3 observer1.onNext
subscribe Observable4 observer.onNext

分析方法执行链

Observable4.subscribe ==>  
Observable4.onSubscribe.call ==> 	
Observable3.subscribe ==> 
Observable3.subscribeOn.call ==> 
Observable2.subscribe ==> 
Observable2.onSubscribe.call ==> 
Observable1.subscribe ==> 
Observable1.onSubscribe.call ==>
Observable.subscribe ==> 
Observable.onSubscribe.call ==> 
observer4.onNext1,onNext2 ==> 
filter ==> 
observer3.onNext1,onNext2 ==> 
map ==>
observer2.onNext1,onNext2 ==> // 提交事件,驱动线程执行完毕,另一个线程执行下面的逻辑(接收事件并驱动后续执行)

...
observer.onNext1,onNext2

小结

形式上顺序执行filter、map 等,从上到下,实际上是subscribe 才真正触发执行,但最后还是按照filter、map 的顺序 执行业务逻辑——代码腾挪的艺术。

突然奇想对照下 builder 模式,示例代码可以类比为

Observable.setFilter(filterFunction)	
			.setMap1(map1Function)		
			.subscribeOn(NewThreadScheduler)
			.setMap2(map2Function)
			.setObserver(observer)
			.build()  

类似于函数式编程,返回函数 或者 函数接口的,一定要小心,代码写在哪里 跟 代码什么时候执行 没啥关系, 经常违反直觉。

Observable.just(1, 2, 3, 4, 5, 6) 
       .subscribe(new Subscriber() {
           @Override
           public void onCompleted() {
               System.out.println("Complete!");
           }
           @Override
           public void onError(Throwable e) {
           }
           @Override
           public void onNext(Integer value) {
               System.out.println("onNext: " + value);
           }
       });

比如上述代码, 一个数组本来不具备任何能力(方法),其对应的订阅者(本质就是 System.out.println("onNext: " + value);)同样也平淡无奇。但对象(此处的数组)可以加行为,行为(此处的 System.out.println)可以包括在一个对象中。 本体啥都没有,我们单靠外在的包裹,就可以将事件流、线程异步执行等概念加到上面去。