技术

下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论及实践 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 LLM部分技术源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

大模型推理服务框架 模型服务化(未完成) 大模型RHLF 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 LLM工具栈 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 容器和CPU那些事儿 kubevela源码分析 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 容器和CPU那些事儿 kubevela源码分析 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 helm 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件

神经网络模型优化

2019年09月12日

前言

机器学习训练中常见的问题和挑战

训练网络的一种方法是,通过反复计算实际输出和期望输出之间的差异,然后改变网络的参数值来缩小该差异,从而使损失最小化,或其输出中的误差最小。梯度下降缩小了误差,使计算损失的函数最小化。使用梯度下降,你也有可能被困在一个由多个山谷(局部最小值)、山峰(局部最大值)、马鞍(马鞍点)和高原组成的非凸形景观中。事实上,像图像识别、文本生成和语音识别这样的任务都是非凸的,而且已经出现了许多梯度下降的变体来处理这种情况。

梯度下降法的实现方式

通俗易懂讲解梯度下降法! 蛮不错的一篇文章。

从梯度下降到 Adam!一文看懂各种神经网络优化算法

关于神经网络,一个学术界搞错了很多年的问题BP算法自八十年代发明以来,一直是神经网络优化的最基本的方法。神经网络普遍都是很难优化的,尤其是当中间隐含层神经元的个数较多或者隐含层层数较多的时候。长期以来,人们普遍认为,这是因为较大的神经网络中包含很多局部极小值(local minima),使得算法容易陷入到其中某些点。到2014年,一篇论文《Identifying and attacking the saddle point problem in high-dimensional non-convex optimization》,指出高维优化问题中根本没有那么多局部极值。作者依据统计物理,随机矩阵理论和神经网络理论的分析,以及一些经验分析提出高维非凸优化问题之所以困难,是因为存在大量的鞍点(梯度为零并且Hessian矩阵特征值有正有负)而不是局部极值。

bias 偏差 和 variance 方差

一文读懂深度学习:从神经元到BERT 形象的说,拟和就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟和方法。拟和的曲线一般可以用函数表示,根据这个函数的不同有不同的拟和的名字:欠拟合(underfitting) 和过拟合(overfitting)

假设存在多个数据集\(D_1,D_2,…\),

  1. f(x;D)由训练集 D 学得的模型 f 对 x 的预测输出。
  2. y 表示x 的真实值
  3. 针对所有训练集,学习算法 f 对测试样本 x 的 期望预测 为:

    \[\overline{f}(x)=E_D[f(x;D)]\]
  4. 偏差,偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力

    \[偏差=(\overline{f}(x)-y)^2\]
  5. 方差,方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响

    \[方差=E_D[(f(x;D)-\overline{f}(x))^2]\]

我们希望偏差与方差越小越好,但一般来说偏差与方差是有冲突的, 称为偏差-方差窘境 (bias-variance dilemma).

  1. 给定一个学习任务, 在训练初期, 由于训练不足, 学习器的拟合能力不够强, 偏差比较大, 也是由于拟合能力不强, 数据集的扰动也无法使学习器产生显著变化, 也就是欠拟合的情况;
  2. 随着训练程度的加深, 学习器的拟合能力逐渐增强, 训练数据的扰动也能够渐渐被学习器学到;
  3. 充分训练后, 学习器的拟合能力已非常强, 训练数据的轻微扰动都会导致学习器发生显著变化, 当训练数据自身的、非全局的特性被学习器学到了, 则将发生过拟合.

  1. 初始训练模型完成后,我们首先要知道算法的偏差高不高
  2. 如果偏差很高,甚至无法拟合训练集,可以尝试

    1. 更大的网络 比如更多的隐层或隐藏单元
    2. 花费更多的时间训练算法
    3. 更先进的优化算法
    4. 新的神经网络结构
    5. 准备更多的训练数据对高偏差没啥大用
  3. 反复尝试,直到可以拟合训练集,使得偏差降低到可以接受的值
  4. 如果方差比较高

    1. 更多的训练数据
    2. regularization/正则化
    3. 新的神经网络结构
  5. 不断尝试,直到找到一个低偏差、低方差的框架

防止过拟合

数学原理上理解起来还比较困难

如果测试集的评估结果相比训练集出现大幅下降,比如下降幅度超过了 5%,就说明模型产生了非常严重的过拟合现象,我们就要反思一下是不是在模型设计过程中出现了一些问题。当模型相对于训练数据的数量和噪度都过于复杂时(模型的层数或者每层的神经元数量过多),可能的解决方案如下

  1. 简化模型:可以选择较少参数的模型(例如,选择线性模型而不是高阶多项式模型)也可以减少训练数据中的属性数量,或者是约束模型。
  2. 收集更多的训练数据。
  3. 减少训练数据中的噪声(例如,修复数据错误和消除异常值)。
  4. 看一看是不是需要加入 Dropout、正则化项来减轻过拟合的风险。

欠拟合和过拟合正好相反。它的产生通常是因为对于底层的数据结构来说,你的模型太过简单。例如,用线性模型来描述生活满意度就属于欠拟合。现实情况远比模型复杂得多,所以即便是对于用来训练的示例,该模型产生的预测都一定是不准确的。解决这个问题的主要方式有:

  1. 选择一个带有更多参数、更强大的模型。
  2. 给学习算法提供更好的特征集(特征工程)。
  3. 减少模型中的约束(例如,减少正则化超参数)。

一文看尽深度学习中的15种损失函数

正则化/规则化——给损失函数“加码”

神经网络正则化(1):L1/L2正则化

假设一个神经网络样本为

\[\begin{Bmatrix} (x^{(i)},y^{(i)}),i=1,...m \end{Bmatrix}\]

训练过程中训练样本的预测结果为

\(\hat y^i,i =1,...m\) 损失函数

\[J(w,b)=\frac{1}{m}\sum\_{i=1}^mL(\hat y^i , y^i)\]

L2正则化是给cost function加上正则项

\[J(w,b)=\frac{1}{m}\sum\_{i=1}^mL(\hat y^i , y^i)+\frac{\lambda}{2m}||w||_2^2\]

梯度下降时 \(W=W-\sigma d_w\)

加入L2 正则项之后,相当于在原来 \(d_w\) 的基础上带上

\[\frac{d}{d_W}(\frac{\lambda}{2m}W^2)=\frac{\lambda}{m}W\]

\(d_w\) 变得更大,W会变得更小

L1正则化采用的正则化项如下所示

\[J(w,b)=\frac{1}{m}\sum\_{i=1}^mL(\hat y^i , y^i)+\frac{\lambda}{2m}||w||_1\]

为什么正则化有利于预防过拟合呢?为什么它可以减少方差问题?我们通过两个例子来直观体会一下

可以想象这是一个过拟合的神经网络。我们添加正则项,它可以避免数据权值矩阵过大,这就是弗罗贝尼乌斯范数,为什么压缩范数,或者弗罗贝尼乌斯范数或者参数可以减少过拟合?

直观上理解就是如果正则化设置得足够大,权重矩阵被设置为接近于0的值,直观理解就是把多隐藏单元的权重设为0,于是基本上消除了这些隐藏单元的许多影响。如果是这种情况,这个被大大简化了的神经网络会变成一个很小的网络,小到如同一个逻辑回归单元,可是深度却很大,它会使这个网络从过度拟合的状态更接近左图的高偏差状态。但是会存在一个中间值,于是会有一个接近“Just Right”的中间状态。

直观理解就是增加到足够大,会接近于0,实际上是不会发生这种情况的,我们尝试消除或至少减少许多隐藏单元的影响,最终这个网络会变得更简单,这个神经网络越来越接近逻辑回归,我们直觉上认为大量隐藏单元被完全消除了,其实不然,实际上是该神经网络的所有隐藏单元依然存在,但是它们的影响变得更小了。

我们进入到神经网络内部来直观感受下为什么正则化会预防过拟合的问题,假设我们采用了tanh的双曲线激活函数

如果使用了正则化部分,那么权重W会倾向于更小,因此得到的 \(Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]}\) 会更小,在作用在激活函数的时候会接近于上图中横轴零点左右的部分。如果 Z 的值最终在这个范围内,都是相对较小的值, \(g(z)=tanh(z)\) 大致呈线性(上图横轴零点左右的部分大致是直线),“边界”越线性,“弯曲度”就会小一点,网络从过拟合逐步向高偏差状态靠拢。

比较全面的L1和L2正则化的解释 未读

模型验证

模型训练的目标是找到拟合能力和泛化能力的平衡点,拟合能力代表模型在已知数据上表现得好坏,泛化能力代表模型在未知数据上表现得好坏。如果算法工程师想让拟合能力足够好,就需要构建一个复杂的模型对训练集进行训练,可越复杂的模型就会越依赖训练集的信息,就很可能让模型在训练集上的效果足够好,在测试集上表现比较差,产生过拟合的情况,最终导致模型泛化能力差。这个时候,如果算法工程师想要提高模型的泛化能力,就要降低模型复杂度,减少对现有样本的依赖,但如果过分地减少对训练样本的依赖,最终也可能导致模型出现欠拟合的情况。

模型验证主要是对待验证数据上的表现效果进行验证,一般是通过模型的性能指标和稳定性指标来评估。

  1. 首先是模型性能。模型性能可以理解为模型预测的效果,你可以简单理解为“预测结果准不准”,它的评估方式可以分为两大类:分类模型评估和回归模型评估
    1. 分类模型解决的是将一个人或者物体进行分类,例如在风控场景下,区分用户是不是“好人”,或者在图像识别场景下,识别某张图片是不是包含人脸。对于分类模型的性能评估,我们会用到包括召回率、F1、KS、AUC 这些评估指标。
    2. 回归模型解决的是预测连续值的问题,如预测房产或者股票的价格,所以我们会用到方差和 MSE 这些指标对回归模型评估。 我们除了要知道可以对模型性能进行评估的指标都有什么,还要知道这些指标值到底在什么范围是合理的。虽然,不同业务的合理值范围不一样,我们要根据自己的业务场景来确定指标预期,但我们至少要知道什么情况是不合理的。比如说,如果算法同学跟我说,AUC 是 0.5,我想都不想就知道,这个模型可能上不了线了,因为 AUC = 0.5 说明这个模型预测的结果没有分辨能力,准确率太差,这和瞎猜得到的结果几乎没啥区别,那这样的指标值就是不合理的。
  2. 模型的稳定性,你可以简单理解为模型性能(也就是模型的效果)可以持续多久。我们可以使用 PSI 指标来判断模型的稳定性,如果一个模型的 PSI > 0.2,那它的稳定性就太差了,这就说明算法同学的工作交付不达标。