技术

mosn有的没的 负载均衡泛谈 《Mysql实战45讲》笔记 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes垂直扩缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubernetes crd 及kubebuilder学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


《编程的本质》笔记

2018年07月14日

简介

本文主要来自陈皓 的两篇文章 以及付费专栏《左耳听风》,作者的水平很高,语句也很精炼,实在是没什么可提炼整理的,干脆就弄成读书笔记了。

编程的本质

两篇论文

Algorithms + Data Structures

  1. 如果数据结构设计的好,算法会简单
  2. 好的通用算法 应该用在不同的数据结构上

An algorithm can be regarded as consisting of a logic component, which specifies the knowledge to be used in solving problems, and a control component, which determines the problem-solving strategies by means of which that knowledge is used. The logic component determines the meaning of the algorithm whereas the control component only affects its efficiency. The efficiency of an algorithm can often be improved by improving the control component without changing the logic of the algorithm. We argue that computer programs would be more often correct and more easily improved and modified if their logic and control aspects were identified and separated in the program text.

Algorithm = Logic + Control

  1. Logic 解决问题
  2. Control 只影响效率
  3. Logic 和 Control 没有关系
  4. Logic 和 Control 如果分开,代码更容易改进和维护

算法的效率往往可以通过提高控制部分的效率来实现,而无须改变逻辑部分

吴翰清​(道哥)眼中的机器智能:计算机的再发展在计算机的发展历史中,冯诺依曼提出了两项技术的关键性改进,第一,由二进制代替了十进制;第二,将程序和数据放到了存储器。当时世界上第一台计算机是由电子管制成的,需要通过大量的外部电路进行控制。冯诺依曼是第一个提出电路设计和逻辑设计是应该分离的,这是思想上的巨大进步。

揉和一下

左耳朵耗子:编程的本质是什么?

  1. 算法的效率往往可以通过提高控制部分的效率来实现,而无须改变逻辑部分。就像函数式编程中的 Map/Reduce/Filter,它们都是一种控制。而传给这些控制模块的那个 lambda 表达式才是我们要解决的问题的逻辑,它们共同组成了一个算法。最后,我再把数据放在数据结构里进行处理,最终就成为了我们的程序。

  2. 控制一个程序流转的方式,即程序执行的方式,并行还是串行,同步还是异步,以及调度不同执行路径或模块,数据之间的存储关系,这些和业务逻辑没有关系。
  3. 代码复杂度的本质:

    • 业务逻辑的复杂度决定了代码的复杂度;
    • 控制逻辑的复杂度 + 业务逻辑的复杂度 ==> 程序代码的混乱不堪;
    • 绝大多数程序复杂混乱的根本原因:业务逻辑与控制逻辑的耦合。

程序的本质复杂性和元语言抽象

程序的本质复杂性和元语言抽象

  1. 逻辑就是问题的定义,比如,对于排序问题来讲,逻辑就是“什么叫做有序,什么叫大于,什么叫小于,什么叫相等”?控制就是如何合理地安排时间和空间资源去实现逻辑。比如java collections 的sort 方法public static <T> void sort(List<T> list, Comparator<? super T> comparator)
  2. 如果目标还是代码“简短、优雅、易理解、易维护”,那么代码优化是否有一个理论极限?这个极限是由什么决定的?普通代码比起最优代码多出来的“冗余部分”到底干了些什么事情?程序的本质复杂性就是逻辑,非本质复杂性就是控制。逻辑决定了代码复杂性的下限,也就是说不管怎么做代码优化,Office程序永远比Notepad程序复杂,这是因为前者的逻辑就更为复杂。如果要代码简洁优雅,任何语言和技术所能做的只是尽量接近这个本质复杂性,而不可能超越这个理论下限。
  3. 理解”程序的本质复杂性是由逻辑决定的”从理论上为我们指明了代码优化的方向:让逻辑和控制这两个维度保持正交关系绝大多数程序不够简洁优雅的根本原因:逻辑与控制耦合
  4. 每种组件形式都代表了特定的抽象维度,组件复用只能在其维度上进行抽象层次的提升。比如,我们可以把常用的HashMap等功能封装为类库,但是不管怎么封装复用类永远是类,封装虽然提升了代码的抽象层次,但是它永远不会变成Lambda,而实际问题所代表的抽象维度往往与之并不匹配。
  5. 逻辑决定了程序的本质复杂性,但接口不是表达逻辑的通用方式,那么是否存在表达逻辑的通用方式呢? 通过元语言抽象让逻辑和控制彻底解耦!有两种方式:元编程(比如thrift、定义了thrift文件,并提供一个thrfit 编译器);元驱动编程,类似于下文的通用检查用户注册信息的逻辑。那么我们编写代码时,如何从业务中发现“元”(逻辑),是一个很有意义的问题,可以从Collections.sort(xx,comparator)开始。

     var meta_create_user = {
         form_id : 'create_user',
         fields : [
             { id : 'name', type : 'text', min_length : 3 },
             { id : 'password', type : 'password', min_length : 8 },
             { id : 'repeat-password', type : 'password', min_length : 8 },
             { id : 'email', type : 'email' }
         ]
     };
    

陈皓在给《代码整洁之道》中的序文提到:无论微观世界的代码,还是宏观层面的架构,无论是三种编程范式还是微服务架构,它们都在解决一个问题:分离控制和逻辑。所谓控制,就是对程序流转的与业务无关的代码或系统的控制(如多线程、异步、服务发现、部署、弹性伸缩等),所谓逻辑则是实实在在的业务逻辑,是解决用户问题的逻辑。控制和逻辑控制了整体的软件复杂度,有效的分离控制和逻辑会让你的系统得到最大的简化。

编程哲学

Design GuidelinesYou must develop a design philosophy that establishes a set of guidelines. This is more important than developing a set of rules or patterns you apply blindly. Guidelines help to formulate, drive and validate decisions. You can’t begin to make the best decisions without understanding the impact of your decisions. Every decision you make, every line of code you write comes with trade-offs. 做任何事都是这样。

Philosophy 要删减

  1. Prepare Your Mind 有感觉但感触不深,建议看原文
  2. Reading Code. Code is read many more times than it is written.
  3. Legacy Software. There are many reasons why programs are built the way they are, although we may fail to recognize the multiplicity of reasons because we usually look at code from the outside rather than by reading it. When we do read code, we find that some of it gets written because of machine limitations, some because of language limitations, some because of programmer limitations, some because of historical accidents, and some because of specifications—both essential and inessential. - Gerald M. Weinberg 你有很多理由堆很多代码,必要也不必要
  4. Mental Models. You must constantly make sure your mental model of your projects are clear. When you can’t remember where a piece of logic is or you can’t remember how something works, you are losing your mental model of the code. This is a clear indication that refactoring is a must. Focus time on structuring code that provides the best mental model possible and code review for this as well. 当你看不懂代码的时候,就是该你重构的时候。Everyone knows that debugging is twice as hard as writing a program in the first place. So if you’re as clever as you can be when you write it, how will you ever debug it?
  5. Correctness vs Performance. Make it correct, make it clear, make it concise, make it fast. In that order. - Wes Dyer
  6. Productivity vs Performance. “Making things easy to do is a false economy. Focus on making things easy to understand and the rest will follow.” - Peter Bourgon 不要去写最容易写的代码,去写最容易懂的代码。

This is about writing simple code that is easy to read and understand without the need of mental exhaustion. Just as important, it’s about not hiding the cost/impact of the code per line, function, package and the overall ecosystem it runs in.

You must be aware of who you are on your team. When hiring new people, you must be aware of where they fall. The code must be written for the average developer to comprehend. If you are below average, you have the responsibility to come up to speed. If you are the expert, you have the responsibility to reduce being clever.

“Encapsulation and the separation of concerns are drivers for designing software. This is largely based on how other industries handle complexity. There seems to be a human pattern of using encapsulation to wrestle complexity to the ground.” 抽象和封装驱动了软件的设计

“Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.” — Donald E. Knuth

Data-Oriented Design:”Data dominates. If you’ve chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorthims, are central to programming.” - Rob Pike

其它

程序员如何把控自己的职业只有学会总结和归纳,才能形成自己的思维框架、自己的套路、自己的方法论,以后学这个东西应该怎么学。就像学一门新的语言,不管GO语言,还是Rust语言,第一件事情就是了解内存是怎么管理的,数据类型什么样,第二是泛型怎么搞,第三是并发怎么弄。还有一些抽象怎么弄,比如说怎么解耦,怎么实现多态?套路这种东西只有学的多了以后才能形成套路,如果你只学会一门语言不会有套路,你要每年学门语言,不用学多精,你思考这个语言有什么不一样,为什么这个这种有玩法,那个有那种玩法,这些东西思考多了套路方法论就出来了。