技术

agentic chat 图数据库的一些考量 LLM一些探索 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LLM工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
agentic chat bert rerank微调 大模型推理tips LLM一些探索 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 Multi-Agent探索 LLM工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

LLMOps

2023年09月10日

前言

钱,算力,数据哪个会成为大模型继续 scale 的瓶颈?总体来说最有可能成为瓶颈的是数据。在特定数据量下即使是无限的参数量都没法打败拥有更多数据量训练出来的有限参数量的模型。因为 retrieval 模式非常有效,所以大家自然会有想法说是不是不需要那么大的模型来记住各种知识点,而只需要一个拥有推理能力的小模型就可以?小模型可以在手机端,机器人设备上直接部署使用,想象空间还是非常大的。

我们的重点不是从头开始训练LLM,而是适应预训练的LLM用于下游任务。

  1. LangChain 的链式调用方法或者说编程语言 Python 不适合生产环境,真正工业级的应用需要有离线、近线几套系统配合供给,才能让在线系统效果出众、性能稳定。
  2. 大模型通过提示词中信息的 Embedding 去检索外部记忆片段这种做法并不高明,充其量只是字面匹配的一个变种而已,存在非常明显的缺点。你无法找到主题最相近的文档,因为在一开始,你就把文档的语义切割了,更何况你所能使用的开源向量检索,根本没办法满足工业级的性能和数据量级要求。
  3. 各类开源模型,比如 ChatGML 和 Llama 是无法直接拿来满足商业需求的。在大模型商业化的过程中,模型的领域定制是免不了的。

LMOps 工具链与千帆大模型平台 LMOps 是基于 MLOps 框架的一种扩展,它主要针对大语言模型进行优化。与 MLOps 相比,LMOps 更注重无监督学习的方式,并弱化了代码层面的处理。然而,在分布式训练、提示工程、Peft 调优、大模型插件扩展以及大模型评估方法等方面,LMOps 相较于 MLOps 进行了相应的增强。

  1. LLM 相关的所有操作可以白屏化进行。

挑战

淘天集团大模型应用十大挑战命题发布 值得细读。

从 PyTorch DDP 到 Accelerate 到 Trainer

框架/平台有一个草灰蛇线

  1. 尽量统一单机、单机多卡、多机多卡代码。其实这一条倒不强求,因为对于一个训练平台太多,统一使用DDP就够了,毕竟不需要算法从0到1写训练代码。
  2. 将很多优化参数化、配置化,比如是否启用量化、lora(model = get_peft_model(model, config) )等。对于用户来说,只暴露数据集名称/地址、模型名/模型文件等有限几个参数就够了。PS:从训练平台的角度讲,最好是所有需求都是参数化的,参数 + 固定代码 + 数据集 = 训练任务。
  3. 如果是多机多卡,则到每台机器上依次启动进程(torchrun 及其各种上层封装)有点麻烦,因此出现了类似pdsh工具, pdsh是deepspeed里面可选的一种分布式训练工具,适合你有几台裸机,它的优点是只需要在一台机上运行脚本就可以,pdsh会自动帮你把命令和环境变量推送到其他节点上,然后汇总所有节点的日志到主节点。要用pdsh前,你得自己给所有的机器配一样的环境,配ssh,把所有机器之间都通过ssh的秘钥文件设置成不需要密码登录,然后安装pdsh,准备工作就结束了。
  4. 很明显,有一个k8s平台更好一些,使用DLRover 等带有容错能力的工具栈,还可以支持分布式训练任务的容错。
class BasicNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)
        self.act = F.relu

    def forward(self, x):
        x = self.act(self.conv1(x))
        x = self.act(self.conv2(x))
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.act(self.fc1(x))
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output
# 构建一些基本的 PyTorch DataLoaders:
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307), (0.3081))
])
train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64)

从零手撸

def train():
    # 把模型放入 CUDA 设备
    model = BasicNet().to(device)
    # 构建优化器
    optimizer = optim.AdamW(model.parameters(), lr=1e-3)
    model.train()
    # 训练和评估循环
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
    model.eval()
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')

通常从这里开始,就可以将所有的代码放入 Python 脚本或在 Jupyter Notebook 上运行它。然而,只执行 python myscript.py 只会使用单个 GPU 运行脚本。如果有多个 GPU 资源可用,可以使用 torch.distributed 的 DataParallel/ DistributedDataParallel,问题是:单机、单机多卡、多机多卡的分布式训练代码不一样。

Accelerate

Accelerate 是一个库,旨在不论是单节点还是多节点,无需大幅修改 PyTorch 原生代码的情况下完成并行化。

def train_ddp_accelerate():
    accelerator = Accelerator()
    # Build model
    model = BasicNet()  
    # Build optimizer
    optimizer = optim.AdamW(model.parameters(), lr=1e-3)
    # 把我们的模型、数据、优化器等等都放进accelerate里面
    train_loader, test_loader, model, optimizer = accelerator.prepare(   # 替换掉 model.to(device)
        train_loader, test_loader, model, optimizer
    )
    # Train for a single epoch
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        output = model(data)                # 省掉 data.to(device)
        loss = F.nll_loss(output, target)   
        accelerator.backward(loss) # accelerator.backward(loss)替换掉常用的loss.backword()
        optimizer.step()
        optimizer.zero_grad()
    # Evaluate
    model.eval()
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')
if __name__ == "__main__":
    train_ddp_accelerate()

可以 accelerate launch {script_name.py} --arg1 --arg2 ... 执行以上脚本,或

# 生成config文件
accelerate config
# xx_config.yaml 单机多卡
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
gpu_ids: all
num_machines: 1
num_processes: 2
rdzv_backend: static
# 基于config文件运行脚本
accelerate launch --config_file default_config.yaml train.py --arg1 --arg2...
# xx_config.yaml 多机多卡
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
gpu_ids: all
machine_rank: 0
num_machines: 2
num_processes: 4
rdzv_backend: static
# 节点1
accelerate launch --config_file default_config.yaml train.py --arg1 --arg2...
# 节点2,config.yaml中的machine_rank改成1即可
accelerate launch --config_file default_config.yaml train.py --arg1 --arg2...

trainer

Hugging Face Trainer.

def train_trainer_ddp():
    model = BasicNet()
    # 定义一些 TrainingArguments 来控制所有常用的超参数
    training_args = TrainingArguments(
        "basic-trainer",
        per_device_train_batch_size=64,
        per_device_eval_batch_size=64,
        num_train_epochs=1,
        evaluation_strategy="epoch",
        remove_unused_columns=False
    )
    # Trainer 需要的训练数据是字典类型的,因此需要制作自定义整理功能
    def collate_fn(examples):
        pixel_values = torch.stack([example[0] for example in examples])
        labels = torch.tensor([example[1] for example in examples])
        return {"x":pixel_values, "labels":labels}
    # 将训练器子类化并编写我们自己的 compute_loss. The Trainer contains the basic training loop which supports the above features. To inject custom behavior you can subclass them and override the 对应的 methods.
    class MyTrainer(Trainer):
        def compute_loss(self, model, inputs, return_outputs=False):
            outputs = model(inputs["x"])
            target = inputs["labels"]
            loss = F.nll_loss(outputs, target)
            return (loss, outputs) if return_outputs else loss
    trainer = MyTrainer(
        model,
        training_args,
        train_dataset=train_dset,
        eval_dataset=test_dset,
        data_collator=collate_fn,
    )
    trainer.train()
if __name__ == "__main__":
    train_trainer_ddp()

这段代码也可以分布式运行,而无需修改任何训练代码

跑AI大模型的K8s与普通K8s有什么不同?

跑AI大模型的K8s与普通K8s有什么不同?

  1. 计算,为了成为一个通用的资源调度系统,K8s搞了个插件框架Device-plugin,来辅助自己判断节点有没有“特殊资源”/GPU,辅助K8s按需分配GPU算力。为实现GPU资源的复用(显存+算力隔离),来提升底层GPU整体的利用率,还要增强Device-plugin插件逻辑。异构硬件故障的检测,任务的快速恢复,都需要这个DP的深入参与。
  2. 存储,Kubernetes集群本身也不管存储,主要管理的是容器“如何接入”存储。通过引入PV和PVC概念,标准的K8s都可以做到将存储挂载至容器中,使得容器里面的程序,像使用本地文件一样的访问远端存储。训练是多轮迭代来逼近目标范围的,因为训练数据量太大,数据无法全部放入内存,在每轮迭代结束后,需要重新从文件系统里读取数据进行下一轮迭代的训。即得重新访问样本进行一轮计算。那么如果每次都重新访问“远程”存储,性能必将大受影响(100T数据,每个epoch重新读一遍OBS桶,你想想那得多慢)。所以如何将大量的样本数据,就近缓存,就是AI+K8s系统需要重点考虑的问题。分布式缓存加速系统,就是其中一条路线。
  3. 网络,在Kubernetes的标准框架里,容器是只有1个网络平面的。即容器里面,只有1个eth0网卡。所以无论是利用overlay实现容器隧道网络,还是underlay实现容器网络直通,其目的都是解决容器网络“通与不通”的问题。而大规模AI集群中,百亿、千亿级别参数量的大模型通常需要做分布式训练,这时参数梯度等信息要在节点间交换,就需要使用RDMA网络来传递,否则参数信息传的实在太慢了。一般成本考虑咱们都是走RoCE方案,即用IB网卡+以太网交换机(而不是IB专用交换机)实现。RoCE网卡的管理,也属于“异构资源”,也需要开发Device-plugin来告知K8s如何分配这种RoCE网卡。而且GPU和RoCE网卡是需要进行联合分配的,因为硬件连接关系,必须是靠近在一起的配对一起用。PS:还有交换机的一些配置
  4. 调度,标准K8s集群的容器调度,都是单个容器独立考虑的:即取一个容器,找到其适合的节点,然后取下个容器调度。但是分布式AI训练容器不一样,它们是一组容器。这一组容器,必须同时运行,才可以进行集合通信,即所谓的All_or_Nothing。通常也会叫「Gang Scheduling」,这个是分布式AI场景的强诉求。于是,各家又开始整活了。什么Coscheduling,Yunikorn,Volcano,Koordinator,Katalyst等纷纷上线。以Volcano为例,它除了完成分布式AI训练中「Pod-group」这种容器组的调度,还实现了容器组之间「SSH免密登录」,MPI任务组的「Hostfile文件」这些辅助实现。