技术

《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


quartz 源码分析

2016年01月15日

简介

从使用开始讲起

简单使用

如何使用分为两个部分:quartz独立使用,和Spring结合使用。之所以分开,是因为spring的存在,虽然增加了易用性,但掩盖了大量细节,影响了我们对程序的直观感觉。quartz独立使用的例子可以参见 [深入解读Quartz的原理][],基本流程就是

  1. 创建Job
  2. 创建Trigger
  3. 创建Scheduler(工厂模式),scheduleJob(jobDetail, strigger)
  4. 最后,Scheduler.start() scheduler.shutdown(true),quartz就开始工作了。
SchedulerFactory schedulerFactory = new StdSchedulerFactory();
Scheduler sched = schedulerFactory.getScheduler();
sched.start();

JobDetail jobDetail=  JobBuilder.newJob(jobClass).withIdentity(jobName, jobGroupName).build();
CronTrigger trigger =  TriggerBuilder.newTrigger().withIdentity(triggerName, triggerGroupName).withSchedule(CronScheduleBuilder.cronSchedule(cron)).build();
sched.scheduleJob(jobDetail, trigger);

手动代码 可以用于 job 数量不确定(即用户手动提交一个定时任务)的场景。

与spring整合

quartz和spring的结合也非常的简单,上述第一步到第三步可由配置文件代替,第4步中的Scheduler则随着spring容器的启动而启动,停止而停止。Spring对程序的介入几乎没有,开发人员只要告诉配置文件什么时间运行哪个类的哪个方法即可。

<bean id="myJob" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
    <property name="targetObject" ref="myJob" />                    //执行类的实例
    <property name="targetMethod" value="run" />                    //执行方法
</bean> 
<bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerFactoryBean"> 
    <property name="jobDetail" ref="myJob" />                           //上面任务的Task配置bean
    <property name="cronExpression" value="0 */1 * * * ?" />            //触发时机表达式  cron表达式在文章的最末尾会说
</bean> 
    <bean id="schedulerFactoryBean" class="org.springframework.scheduling.quartz.SchedulerFactoryBean" autowire="no">
    <property name="triggers">
        <list>
            <ref bean="cronTrigger" />                           //上面配置的触发器
        </list>
    </property>
</bean> 

MethodInvokingJobDetailFactoryBean 是一个JobDetail 的FactoryBean

Spring与其它框架的结合,往往从代码上改变了框架的使用“感觉”。其实,spring的本质是ioc(及其基础上的aop),spring为框架提供的“方便”主要是ioc提供的,包括bean的生成,生命周期的管理(比如quartz的scheduler随着ioc容器的启动而启动,shutdown而shutdown)等,并不会改变框架(所提供类的)的使用方式(即一些接口方法的调用)。

源码分析

Date scheduleJob(JobDetail jobDetail,Trigger trigger){
    // 数据判空等
    // 关键操作
    resources.getJobStore().storeJobAndTrigger(jobDetail, trig);
    notifySchedulerListenersJobAdded(jobDetail);
    notifySchedulerThread(trigger.getNextFireTime().getTime());
    notifySchedulerListenersSchduled(trigger);
    // 返回值
}
protected void notifySchedulerThread(long candidateNewNextFireTime) {
    if (isSignalOnSchedulingChange()) {
        signaler.signalSchedulingChange(candidateNewNextFireTime);
    }
}

整体逻辑

  1. 数据容器/队列:QuartzSchedulerResources基本封装了quartz运行的基本数据
  2. 生产者
    1. Scheduler本身不执行任务,只是将job和trigger存入到QuartzSchedulerResources中,并向QuartzSchedulerThread发送信号
    2. 一个QuartzSchedulerThread不断的检查 job 状态,触发最近的下一个任务(立即)执行。一些高级策略 任务调度:时间轮算法经典案例解析及应用实现
  3. 消费者: ThreadPool 执行 job

signaler是一个SchedulerSignaler接口,其实现类SchedulerSignalerImpl有一个构造方法SchedulerSignalerImpl(QuartzScheduler sched, QuartzSchedulerThread schedThread),它保有了一个QuartzSchedulerThread引用。这里的线程通信,只是一个线程保有了另一个线程的引用。QuartzScheduler.scheduleJob ==> notifySchedulerThread ==> signaler.signalSchedulingChange ==> schedThread.signalSchedulingChange(candidateNewNextFireTime)

public class QuartzSchedulerThread extends Thread {
    private QuartzSchedulerResources qsRsrcs;
    public void run() {
        while (!halted.get()) {
            int availThreadCount = qsRsrcs.getThreadPool().blockForAvailableThreads();
            if(availThreadCount > 0){
                triggers = qsRsrcs.getJobStore().acquireNextTriggers(...)
                // if triggers is not empty
                now = System.currentTimeMillis();
                long triggerTime = triggers.get(0).getNextFireTime().getTime();
                long timeUntilTrigger = triggerTime - now;
                while(timeUntilTrigger > 2) {
                    // 停一下   sigLock.wait(timeUntilTrigger);
                }
                bndles = qsRsrcs.getJobStore().triggersFired(triggers);
                for (int i = 0; i < bndles.size(); i++) {
                    TriggerFiredBundle bndle = ...
                    shell = qsRsrcs.getJobRunShellFactory().createJobRunShell(bndle);
                    shell.initialize(qs);
                    qsRsrcs.getThreadPool().runInThread(shell)
                }
            }else{
                continue;
            }
        }
    }
}

QuartzSchedulerThread 主要逻辑

  1. 找下一个要触发的trigger
  2. 等着这个trigger 时间到了 可以运行
  3. 根据trigger拿到相应的组件TriggerFiredBundle,触发ThreadPool 执行相应任务(使用JobRunShell实际执行),QuartzSchedulerThread本身不管。

分布式定时(未完成)

问题描述:一个数据库表记录有不同的状态值,定时从中拉取符合条件的状态值的记录,处理(调用其它业务的rpc,进行数据的增删改),然后更新数据库。

对于一个定时任务,单机环境存在负载有限及可靠性问题。

在集群环境中,同样的定时任务,在集群中的每台机器都会执行,这样定时任务就会重复执行,不但会增加服务器的负担,还会因为定时任务重复执行造成额外的不可预期的错误(对同一个增加rpc操作进行多次调用)

基于spring+quartz的分布式定时任务框架

Quartz应用与集群原理分析

在分布式定时任务中(或者集群),同一时刻只会有一个定时任务运行。

那如何做到,一会儿定时任务这个机器上运行,一会儿在那个机器上运行呢?