技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


项目隔离——案例研究

2018年08月19日

简介

每个公司都有一个测试环境 供技术开发和调试。随着公司的壮大,会产生一个问题:一个测试环境够用么?不够用。只有一个测试环境的痛点:开发5分钟,联调1小时。为何呀?

假设你的服务依赖ABC,你联调的时候,极有可能ABC 中的某一个服务也在开发阶段,于是便可能:

  1. ABC 某一个服务直接不可用
  2. ABC 代码可能有bug,进而导致联调失败,耗费时间定位bug 在哪个服务上。

以上述问题为引子,可以看到:测试环境 应随着公司的壮大 而逐渐调整和规范,本文尝试梳理下 测试环境 管理 相关的几个问题,尤其关注的是环境隔离问题。

测试环境的特点

阿里测试环境运维及研发效率提升之道:生产环境最关注的就是稳定,测试环境更关注的是研发效率。

测试环境的特点

  1. 频繁的代码提交和部署
  2. 开发频繁修改自己的代码,但希望别人能够提供一个稳定的服务
  3. 资源配置低

资源配置低

  1. 服务器 配置比较低。比如磁盘容量比较低,一个服务打满磁盘,于是同主机的其它服务 直接就挂了。因此 需要进行资源监控,至少要做到支持报警以尽快发现问题。
  2. 服务器 运行环境不稳定,一般测试环境 都在公司的办公大楼内,比如笔者公司,每年断一次电是必然事件。

频繁的代码提交

带来的挑战

  1. 对于docker 环境来说,频繁部署会产生大量的镜像文件。因此要提供清理机制,尽可能压缩镜像文件大小,方法:直接压缩;尽可能共用layer。
  2. 尽可能缩短 代码提交 到开始在测试环境运行的 时间

环境隔离

为什么要隔离?为了避免相互干扰。可以回顾下开篇的案例。

环境包括什么?

  1. 互通服务器/容器,提供计算资源
  2. 中间件,比如mq、zk等
  3. 前端接入,比如nginx;后端存储,比如db、hdfs等

解决方案

有赞是如何高效管理自己的开发测试环境的?

  1. 强隔离,一个环境一套业务服务、中间件、数据库等。听起来 服务器成本 很贵的样子,多环境的维护也需要耗费人力。
  2. 弱隔离,能共用共用,按需隔离。对于服务A,存在开发版本A1及稳定版本A0,服务B类似。则A 服务调用 B 服务时。A0 会调用B0 服务,A1 服务则若存在B1 服务便调用B1 服务,否则A1 调用B0 服务。

弱隔离 实现方案

实现原理

  1. 根据源头的IP所在隔离组进行路由。(阿里文章中的方案)

    暂时忽略上图中的红线

    把源头的请求IP放在ID(阿里有一个中间件叫做鹰眼,每个用户请求会生成一个ID,这个ID会随着每一次调用一个一个传下去)里面,当你服务调用的时候,服务路由会把ID取出来,看看你的IP有没有跟隔离组做关联,如果有的话就到那个隔离组里面去调用。

    特别的,把一个服务单独放在一个隔离组里,可以实现“服务在运行,但不会被任何人调用到”的效果

  2. 请求链路 中携带 环境标识。(有赞文章中的方案)

    注意箭头的颜色

有赞与阿里方案类似,将服务实例信息与env 绑定。不同的是

  1. 隔离组的概念 是从 服务粒度来说的,即假设一次开发只涉及到 AB 两个服务,则希望实现:AB 存在开发和稳定两种状态,开发状态 可以访问别人的稳定状态,但开发状态对外不可见,除非AB 本身就是一起开发的,B 的开发状态 对A 可见。

  2. 有赞 的方案则是从 隔离角度 来说的,只是说 硬隔离成本太高,通过env 参数化的方式 实现弱隔离。

隔离组的概念 更加通用,你可以一个服务 占用一个隔离组,而一个服务占用env 则一个语义上不太顺。

信息关联

因为阿里 和 有赞的文章 分别提到 环境 和隔离组 等类似概念,以下统一 使用隔离组。

服务的提供方,如何告知 自己提供的是哪个隔离组的服务? 调用方 如何感知 自己所在的隔离组,以便调用 对应隔离组的服务。

对于rpc 服务,可以提供 第三方配置界面人为关联,将服务实例信息(比如ip)与隔离组 的关联情况 写入到 etcd/zk 等。

对于rpc 服务,服务治理框架 在发起 rpc 调用时

  1. 根据本机信息/ip 查询zk,感知自己所在的隔离组
  2. 查询目标 服务 在该隔离组 中是否有 实例
  3. 若有,则直接调用
  4. 若无,则调用默认 隔离组 对应的服务

对于restful 等服务,服务方可以 约定 url 规范,提供服务的url 中包含 隔离组信息,并强制通过域名 访问(这样就用到了 nginx)。请求方 则在请求中 加入 带有隔离组信息的cookie(此时一般一个隔离组一个请求方,可以在请求方启动时配置好 隔离组参数,也可以单独做一个代理系统,在代理系统中关联 请求方ip 和隔离组,然后由代理系统转发rest请求),由nginx 根据 cookie 信息 自动 路由到 对应的 隔离组服务。

后续 全链路 压测时,也可以使用 弱隔离的逻辑。

对调度系统的要求

在单一环境下,除了业务上有shard 逻辑的需求 导致项目需要多个实例外,一般一个项目一个实例即可。此时,用户发起一次项目的部署,则调度系统会干掉 老的实例,创建新的实例。

多隔离组环境下会带来以下不同:

  1. 项目通常会具备两个状态: 开发和稳定。此时,用户发起一个项目的部署,可以将隔离组 配置 纳入部署参数,调度系统 在隔离组维度上 确保一个 隔离组 只有特定数量(一般是一个)的实例
  2. 项目稳定后,通常会删除 开发 版本的隔离组 实例,删除 操作 也应确保 在隔离组 维度下。

弱隔离有多弱

  1. 比如mq 是否要做弱隔离?发的消息 带上 隔离组标识,只有对应 隔离组 标识的消费者才可以接收 该隔离组标识的消息。
  2. 2019.4.10补充:当某个隔离组的服务挂掉时,比如下图的C1,那么是走A0->B0->C0->D1呢?还是直接告诉用户C1挂了。

    请求时除了携带隔离组标识外,还应携带一个白名单:描绘哪些服务挂掉就立即报错。否则就有则调用,无则调用stable(稳定组,对应上图中的v0),再无则报错。

针对第二点有一个背景,笔者最初实现的版本就是:对于A1,有B1则调用,无B1则调用B0。而新的业务需求是,没有B1就要立即报错。然后开始互撕,从中可以发现几个问题

  1. 一开始受限于强弱隔离的概念,对”弱隔离有多弱“没有认识。技术概念是人为创造出来的,但创造出来是解决问题的。后来者削足适履,为了满足概念而做事儿,超出概念的却认为提出问题的人有问题。不执念于概念,尤其是权威概念,专注于解决问题。
  2. 知道、理解、应用,每一个层次之间都差的挺远的。
  3. 技术沟通极易转换为人身攻击,尤其是事先存在偏见的时候

单纯的 通过 docker 实现 隔离效果的 可能性

重新回顾下 环境隔离的目标:项目A的实例存在 开发(标记为A1)和 稳定(标记为A0) 两个状态/版本,希望开发 状态 对外不可见,但可以调用 处于 稳定状态的 依赖服务B,B服务类似。

说明:

  1. 开发状态可能有多个,因为一个项目可能coder1 和 coder2 同时在开发,两个coder改的逻辑不一样。为简化描述,本文以两个状态 来阐述问题。
  2. 特指 rpc 服务

从中可以看到,项目A/B在同一时刻 可能会存在 两个实例,假设存在A0、A1、B0、B1,则要满足以下要求:

  1. 没有B1时,A1 可以访问B0
  2. 有B1时,A1 只能访问 B1
  3. A0 无法 访问B1

几个可能方案:

  1. 不同隔离组处在不同的网络。满足要求23,不满足1
  2. 开发状态的隔离组 只有出口网络,没有入口网络。这样根本不能通信
  3. 开发状态下的隔离组 处在不同的网络,任何开发隔离组 可以和 稳定状态下的隔离组 互通。满足要求13,不满足2

本质原因就是,网络隔离只能决定禁止 访问谁,但不能决定 “优先”访问谁,优先是一个偏语义的概念,只能框架层去实现。