简介
从容错性强弱的角度来串一下一致性协议
以容错方式达成一致,自然不能要求所有服务器都达成一致状态,只要超过半数以上的服务器达成一致就可以了。假设有 N 台服务器,大于等于 N / 2 + 1 台服务器就算是半数以上了 。
从容错性角度来串一下一致性协议
表现 | 算法 | |
---|---|---|
无法容错 | XA/TCC | 当然,也可以采用一些补偿机制稍稍 容忍些超时类的问题 |
非拜占庭错误 | 节点故障或网络不通,只是收不到它的消息了,而不会收到来自它的错误消息。相反,只要收到了来自它的消息,那么消息本身是「忠实」的。 | paxos |
拜占庭错误 | 1. 叛徒的恶意行为,在不同的将军看来,叛徒可能发送完全不一致的作战提议。 2. 虽然并非恶意,出现故障(比如信道不稳定)导致的随机错误或消息损坏 |
|
拜占庭将军问题 | 叛徒发送前后不一致的作战提议,属于拜占庭错误; 而不发送任何消息,属于非拜占庭错误。 |
BTF |
BFT的算法应该可以解决任何错误下的分布式一致性问题,也包括Paxos所解决的问题。那为什么不统一使用BFT的算法来解决所有的分布式一致性问题呢?为什么还需要再费力气设计Paxos之类的一些算法呢?
- 提供BFT这么强的错误容忍性,肯定需要付出很高的代价。比如需要消息的大量传递。
- 对于运行环境的假设(assumption),具体到Lamport在论文中给出的解决「拜占庭将军问题」的算法,它还对运行环境的假设(assumption)有更强的要求。比如BTF 有一条: The absence of a message can be detected ==> 依赖某种超时机制 ==> 各节点时钟同步 ==> 同步模型。
一致性算法
下面看下 《区块链核心算法解析》 中的思维线条
-
两节点
- 客户端服务端,如何可靠通信?如何处理消息丢失问题
- 请求-确认,客户端一段时间收不到 确认则重发,为数据包标记序列号解决重发导致的重复包问题。这也是tcp 的套路
- 单客户端-多服务端
-
多客户端-多服务端
- 多服务端前 加一个 单一入口(串行化器), 所以的客户端先发给 串行化器,再分发给服务端。即主从复制思路==> 串行化器单点问题
-
客户端先协调好,由一个客户端发命令
- 抽取独立的协调器。2pc/3pc 思路
- 客户端向所有的服务端申请锁,谁先申请到所有服务器的锁,谁说了算。缺点:客户端拿到锁后宕机了,尴尬!
- 票的概念,弱化形式的锁。paxos 套路(当然,具体细节更复杂)
- 广播多轮投票。随机共识算法,不准确描述:假设只对01取得共识,第一轮每个节点随机选定一个值,广播给其它所有节点,节点收到超过半数其它节点的值,如果恰好是同一个值,则节点改变自己本轮的“意见”,重新广播该值。
tips
- paxos 无法保证确定性,即理论上存在一直无法达成一致、不停地投票的情况
- paxos/随机共识算法等 假定 参与节点都按规则 运行
- 《分布式协议与算法实战》Basic Paxos 实现了容错,在少于一半的节点出现故障时,集群也能工作。它不像分布式事务算法那样,必须要所有节点都同意后才提交操作,因为“所有节点都同意”这个原则,在出现节点故障的时候会导致整个集群不可用。
基于拜占庭节点的一致性
漫谈分布式系统、拜占庭将军问题与区块链拜占庭节点:节点可能不按规则行事,甚至故意发送错误数据,多个拜占庭节点也可能串谋。
基于拜占庭节点达成共识
- 拜占庭容错(BFT)算法,一系列算法的统称。网络中节点的数量和身份必须是提前确定好的
-
POW,间接共识,先选谁说了算,再达成共识。
- 这个算法具有不对称性,也就是说,工作对于请求方是有难度的,对于验证方则是比较简单的,易于验证的。
- 计算出符合条件的哈希值后,矿工就会把这个信息广播给集群中所有其他节点,其他节点验证通过后,会将这个区块加入到自己的区块链中,最终形成一串区块链
- 如果攻击者掌握了较多的算力,能挖掘一条比原链更长的攻击链,并将攻击链向全网广播,这时呢,按照约定,节点将接受更长的链,也就是攻击链,丢弃原链。
解决拜占庭问题,笔者感觉有几个点
- 消息签名:签名消息约束了叛徒的作恶行为,比如,叛徒可以不响应,可以相互勾结串通,但叛徒无法篡改和伪造忠将的消息。
- 广播和转发,一个将军的命令发给所有其它将军,A将收到的B 将军的信息也转发给其他所有将军。从信息论的角度来说,就是信息尽可能的冗余。熵是对不确定性的度量。从控制论的角度来看,应叫不确定性。当我们不知道某事物具体状态,却知道它有几种可能性时,显然,可能性种类愈多,不确定性愈大。不确定性愈大的事物,我们最后确定了、知道了,这就是说我们从中得到了愈多的信息,也就是信息量大。
区块链采取的解决方案是工作量证明。一台服务器要想在分布式集群中记录数据(即所谓分布式记账),必须进行一个规模庞大的计算,比如计算一个 256Bit 的 hash 值,这个值的前若干位必须为 0。比特币区块链就是采用类似这样的工作量证明算法,为了进行这样的 hash 计算,目前比特币区块链消耗的电量相当于一个中等规模国家的用电量。通过这种工作量证明方式,保证了恶意服务器要想伪造篡改数据,必须拥有强大的计算能力(占整个集群服务器计算能力的 51% 以上),而只要我们认为大多数服务器是善意的,那么这样的区块链分布式集群就是可靠的。
区块链到底是什么?有人说是个无法篡改的超级账本,也有人说是个去中心化的交易系统,还有人说它是构建数字货币的底层工具。但是,从技术的角度来说,它首先是个解决了拜占庭将军问题的分布式网络,在完全开放的环境中,实现了数据的一致性和安全性。而其它的属性,都附着于这一技术本质之上。
怎样舍弃一致性提升性能?
服务的性能,主要体现在请求的时延和系统的并发性这两个方面,我通常会把分布式系统分为纵向、横向两个维度,其中纵向是请求的处理路径,横向则是同类服务之间的数据同步路径。这样,在纵向上在离客户端更近的位置增加数据的副本,并把它存放在处理速度更快的物理介质上,就可以作为缓存降低请求的时延;而在横向上对数据增加副本,并在这些主机间同步数据,这样工作在数据副本上的进程也可以同时对客户端提供服务,这就增加了系统的并发性。
其它
分布式架构知识体系 分布式环境下,我们无法保证网络的正常连接和信息的传送,于是发展出了CAP/FLP/DLS这三个重要的理论:
- CAP:分布式计算系统不可能同时确保一致性(Consistency)、可用性(Availablity)和分区容忍性(Partition)。
- FLP:在异步环境中,如果节点间的网络延迟没有上限,只要有一个恶意的节点存在,就没有算法能在有限的时间内达成共识。
- DLS:
- 在一个部分同步网络的模型(也就是说:网络延时有界限但是我们并不知道在哪里)下运行的协议可以容忍1/3任意(换句话说,拜占庭)错误;
- 在一个异步模型中的确定性的协议(没有网络延时上限)不能容错(不过这个论文没有提起随机化算法可以容忍1/3的错误);
- 同步模型中的协议(网络延时可以保证小于已知d时间)可以,令人吃惊的,达到100%容错,虽然对1/2的节点出错可以发生的情况有所限制
弱一致性BASE。多数情况下,其实我们也并非一定要求强一致性,部分业务可以容忍一定程度的延迟一致,所以为了兼顾效率,发展出来了最终一致性理论BASE,BASE是指基本可用(Basically Available)、软状态( Soft State)、最终一致性( Eventual Consistency)
- 基本可用(Basically Available):基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用。
- 软状态(Soft State):软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。
- 最终一致性(Eventual Consistency):最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。
分布式架构的核心就在一致性的实现和妥协,那么如何设计一套算法来保证不同节点之间的通信和数据达到无限趋向一致性,就非常重要了。保证不同节点在充满不确定性网络环境下能达成相同副本的一致性是非常困难的,业界对该课题也做了大量的研究。
- 首先我们要了解一致性的大前提 原则 (CALM):CALM原则的全称是 Consistency and Logical Monotonicity ,主要描述的是分布式系统中单调逻辑与一致性的关系,它的内容如下,参考consistency as logical monotonicity[1]
- 在分布式系统中,单调的逻辑都能保证 “最终一致性”,这个过程中不需要依赖中心节点的调度
- 任意分布式系统,如果所有的非单调逻辑都有中心节点调度,那么这个分布式系统就可以实现最终“一致性”
- 我们了解到分布式一些规律原则之后,就要着手考虑如何来实现解决方案,一致性算法的前提是数据结构,或者说一切算法的根基都是数据结构,设计良好的数据结构加上精妙的算法可以高效的解决现实的问题。经过前人不断的探索,我们得知分布式系统被广泛采用的数据结构CRDT。
- 基于状态(state-based):即将各个节点之间的CRDT数据直接进行合并,所有节点都能最终合并到同一个状态,数据合并的顺序不会影响到最终的结果。
- 基于操作(operation-based):将每一次对数据的操作通知给其他节点。只要节点知道了对数据的所有操作(收到操作的顺序可以是任意的),就能合并到同一个状态。
- 了解数据结构后,我们需要来关注一下分布式系统的一些重要的协议HATs(Highly Available Transactions),ZAB(Zookeeper Atomic Broadcast):
- 最后要学习的是业界主流的一致性 算法 :
- Paxos:《优雅的Paxos算法》
- Raft :《Raft 一致性算法》
- Gossip:《Gossip Visualization》
- 场景分类
- 文件系统,现代分布式文件系统则出自赫赫有名的Google的论文《The Google File System》奠定了分布式文件系统的基础。
- 数据库,数据库当然也是属于文件系统,主要增加了事务,检索,擦除等高级特性,所以复杂度又增加了,既要考虑数据一致性也得保证足够的性能。传统关系型数据库为了兼顾事务和性能的特性,在分布式方面的发展有限,非关系型数据库摆脱了事务的强一致性束缚,达到了最终一致性的效果,从而有了飞跃的发展,NoSql(Not Only Sql)也产生了多个架构的数据库类型,包括KV,列式存储,文档类型等。
- 分布式计算系统构建在分布式存储的基础上,充分发挥分布式系统的数据冗余灾备,多副本高效获取数据的特性,进而并行计算,把原本需要长时间计算的任务拆分成多个任务并行处理,从而提高了计算效率。分布式计算系统在场景上分为离线计算,实时计算和流式计算。
- 缓存作为提升性能的利器无处不在,小到CPU缓存架构,大到分布式应用存储。分布式缓存系统提供了热点数据的随机访问机制,大大提升了访问时间,但是带来的问题是如何保证数据的一致性,引入分布式锁来解决这个问题,主流的分布式存储系统基本就是Redis了
- 分布式消息队列系统是消除异步带来一系列的复杂步骤的一大利器,多线程高并发场景先我们常常要谨慎的去设计业务代码,来保证多线程并发情况下不出现资源竞争导致的死锁问题。而消息队列以一种延迟消费的模式将异步任务都存到队列,然后再逐个消化。
- 监控:分布式系统从单机到集群的形态发展,复杂度也大大提高,所以对整个系统的监控也是必不可少。
- 账本:前文我们提到所谓分布式系统,是迫于单机的性能有限,而堆硬件却又无法无休止的增加,单机堆硬件最终也会遇到性能增长曲线的瓶颈。于是我们才采用了多台计算机来干同样的活,但是这样的分布式系统始终需要中心化的节点来监控或者调度系统的资源,即使该中心节点也可能是多节点组成。而区块链则是真正的区中心化分布式系统,系统里面才有P2P网络协议各自通信,没有真正意义的中心节点,彼此按照区块链节点的算力,权益等机制来协调新区块的产生。