技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


为什么netty比较难懂?

2017年10月13日

前言

到目前为止,笔者关于netty写了十几篇博客,内容非常零碎,笔者一直想着有一个总纲的东西来作为主干,将这些零碎place it in context。所以梳理了一张图,从上往下“俯视”看,netty有哪些东西?

为什么很多人会觉得学习netty代码比较难(这也是笔者最初的感受)?因为对于大部分人来说,是先接触了netty,才第一次接触nio、同步操作异步化 等技术/套路,除了要理解netty代码本身的抽象之外,还需理解很多新概念。

三个基本的技术点

一个稍微复杂的框架,必然伴随几个抽象以及抽象间的依赖关系,那么依赖的关系的管理,可以选择spring(像大多数j2ee项目那样),也可以硬编码。这就是我们看到的,每个抽象对象有一套自己的继承体系,然后抽象对象子类之间又彼此复杂的交织。比如Netty的eventloop、unsafe和pipeline,channel作为最外部操作对象,聚合这三者,根据聚合的子类的不同,Channel也有多个子类来体现。

同时,做一个粗略的对应

模型 代码抽象
io模型 unsafe
线程模型 eventloop
数据处理模型 pipeline

通过聚合eventloop ,channel 有了提供异步接口的能力,参见netty中的线程池

Netty与reactor pattern

reactor pattern 理念 参见 Understanding Reactor Pattern: Thread-Based and Event-Driven,并且建议你读三遍。任何框架,一定都是先有了理念和思想,然后体现在代码上。看代码之前,找到那个理念和思想。

  1. 阻塞io 无论怎么玩,Unfortunately, there is always a one-to-one relationship between connections and threads
  2. Event-driven approach can separate threads from connections, which only uses threads for events on specific callbacks/handlers.
  3. An event-driven architecture consists of event creators and event consumers. The creator, which is the source of the event, only knows that the event has occurred. Consumers are entities that need to know the event has occurred. They may be involved in processing the event or they may simply be affected by the event.
  4. The reactor pattern is one implementation technique of the event-driven architecture. In simple words, it uses a single threaded event loop blocking on resources emitting events and dispatches them to corresponding handlers/callbacks.
  5. There is no need to block on I/O, as long as handlers/callbacks for events are registered to take care of them. Events are like incoming a new connection, ready for read, ready for write, etc.
  6. This pattern decouples modular application-level code from reusable reactor implementation.
  7. The purpose of the Reactor design pattern is to avoid the common problem of creating a thread for each message/request/connection.Avoid this problem is to avoid the famous and known problem C10K.

《反应式设计模式》 基于事件的系统通常建立在一个事件循环上。任何时刻只要发生了事情, 对应的事件就会被追加到一个队列中。事件循环持续的从队列中拉取事件,并执行绑定在事件上的回调函数。每一个回调函数通常都是一段微小的、匿名的、响应特定事件(例如鼠标点击)的过程。回调函数也可能产生新事件,这些事件随后也会被追加到队列里面等待处理。

netty 代码是如何驱动的

netty 首先是由线程池驱动的,其次,与我们熟悉的“并发执行体”之间只有竞争关系不同,“执行体”之前可以移交数据(也就是合作),一个线程除了处理io 还可以处理task

从执行体内部来说,我们习惯对象 被“线程”驱动, 而不是让线程作为对象的成员,让对象成为一个具有执行能力的主体。

io编程的理想姿势

Go语言TCP Socket编程从tcp socket诞生后,网络编程架构模型也几经演化,大致是:“每进程一个连接” –> “每线程一个连接” –> “Non-Block + I/O多路复用(linux epoll/windows iocp/freebsd darwin kqueue/solaris Event Port)”。伴随着模型的演化,服务程序愈加强大,可以支持更多的连接,获得更好的处理性能。

不过I/O多路复用也给使用者带来了不小的复杂度,以至于后续出现了许多高性能的I/O多路复用框架, 比如libevent、libev、libuv等,以帮助开发者简化开发复杂性,降低心智负担。不过Go的设计者似乎认为I/O多路复用的这种通过回调机制割裂控制流的方式依旧复杂,且有悖于“一般逻辑”设计,为此Go语言将该“复杂性”隐藏在Runtime中了:Go开发者无需关注socket是否是 non-block的,也无需亲自注册文件描述符的回调,只需在每个连接对应的goroutine中以“block I/O”的方式对待socket处理即可。PS:netty 在屏蔽java nio底层细节方面做得不错, 但因为java/jvm的限制,“回调机制割裂控制流”的问题依然无法避免。

一个典型的Go server端程序大致如下:

func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        // ... ...
        // write to the connection
        //... ...
    }
}

func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        fmt.Println("listen error:", err)
        return
    }

    for {
        c, err := l.Accept()
        if err != nil {
            fmt.Println("accept error:", err)
            break
        }
        // start a new goroutine to handle
        // the new connection.
        go handleConn(c)
    }
}