技术

Agent实践 LLM微调理论 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LLM工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps embedding的原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 helm 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件

LLM微调理论

2024年08月17日

简介

LLama3 405B 技术解读大模型之所以能力仍在快速提升,主要驱动力有三个:

  1. 首先就是不断扩大模型和数据规模(Scaling Law)。
  2. 一个是越来越强调数据质量的作用,各种数据筛选方法和工具越来越多,保证质量是第一位的
  3. 不断增加数学、逻辑、代码这种能够提升大模型理性能力的数据配比比例,包括在预训练阶段(增加预训练数据此类数据比例,且在预训练后面阶段来上采样此类数据,就是说同样数据多执行几遍,以增加其对模型参数影响的权重)和Post-Training阶段(增加此类数据占比,Llama3的经过instruct的模型比仅做预训练模型相比,各种尺寸的效果提升都很大)皆是如此。 目前看,在通用数据快被用完情况下,第三个因素会成为之后大模型进步的主导力量,包括使用数学、逻辑、代码合成数据在Post-Training阶段的应用,目前技术也越来越成熟,其质量和数量会是决定未来大模型效果差异的最关键因素。PS:合成数据其实是模型蒸馏的一种变体,合成数据是更大的模型输出数据作为Teacher,小点的模型作为Student从中学习知识,所以其实本质上是一种模型蒸馏。

继续预训练

继续预训练是在已经预训练的模型基础上,进一步在特定领域的数据上进行训练,以提高模型对该领域的理解和适应能力。数据集通常是未标注的,并且规模较大。

  1. 混合数据,如果想要领域的模型还具备一定的通用能力,即通用的能力不会退化(或者灾难性遗忘)这就需要在语言模型训练的时候混杂通用的数据。
  2. 要不要从零训。回顾人对知识的理解:小学中学都在学习通用领域的知识,然后大学阶段继续进一步学习特定领域的知识。所以在通用模型的基础上继续二次预训练注入领域知识是合理的。但是如果想通过二次预训练进行语言层面的迁移就会比较难,没有从零开始训练好。回顾人对语言的学习,如果刚“出生”时候就在学习一门语言,进行听说读写的训练,这就是母语了。会比长大以后再去学习一门外语要容易的多,效果也要好很多。所以基于llama做的中文适配 不如 纯中文训练的baichuan 在中文任务上效果好。

浅谈-领域模型训练 提到了很多pre-training 和post-training 的why/trick。 pretrain 最重要的几个东西:数据,学习率,优化器!

  1. 数据就不多说了,质量为王,记得去重!
  2. 学习率:模型的更新幅度,size越大的模型,特征空间越大、表达能力和学习能力越强,因此学习率也应该小一点(做个假设,模型 size 无限大,有无数的神经元,那么它完全可以启用没用到的神经元来学习新知识,这样就避免了遗忘旧知识这个现象的发生)。
  3. 优化器:Adam 的基础知识我就不谈了,这里只强调一点,模型的优化方向是“历史动量”和“当前数据 grad”共同决定的。也就是说,不管当前数据多 bad,优化器都会限制你做出太大幅度的更新,梯度裁剪/梯度正则类似。因此,基本可以认为我们的模型具有一定的抗噪能力。

目前,大家基本都默认使用如下三个步骤进行 pretrain:

  1. warmup:在训练过程中,将学习率慢慢提高。(可以这么理解,你的模型还没有积攒足够的动量去抗噪,太大的学习率容易造成不可逆的影响)
  2. linear / constant / cosine decay:维持稳定的学习率,或者缓慢衰减的学习率。
  3. Anneal:用小学习率去学高精数据,IFT数据,逻辑数据,去提高通用逻辑能力能力和打榜能力。

同源小模型是大模型的实验场

大模型 VS 小模型scaling law 告诉我们:小模型的性能表现能用来预测大模型的性能表现。这也就是说,大部分情况下,我们是可以通过在同源小模型上做实验,去预测大模型的效果的。

在 pretrain / post_pretrain 阶段有很多需要做实验才能知道答案的问题。怎么样的数据配比最合理,课程学习中哪种学习顺序效果最好,数据的质量是否过关,数据的去重程度是否过关,先训4k、再扩到 32k 和直接训 32k 的效果差异,post_pretrain 的时候怎样调整学习率和数据分布来防止模型断崖式的能力遗忘?

直接启动大模型的成本实在是在太高昂了,可能训练两三周,loss 曲线才会表现出一点点差异。但我们完全可以在小模型上大胆的训,每天训 100B token,两天就能出一版实验结果。观察 tensorbord 的 loss 曲线,刷 benchmark 打榜,或是做 sft 看效果,总之小模型可以帮助我们快速地敲定 pretrain 阶段使用的数据配置。

在 alignment 阶段,我们也可以去借助小模型和 scaling law 来指导工作。我要强化模型的某个能力,准备了 N 条训练数据,能让模型达到多大的提升呢?可以看看这份数据在小模型上能有大提升,绘制一条曲线,去预估大模型的性能表现。说的再通俗一点,100B token 能让 0.5B 模型下降 0.2 loss,能让 72B 模型下降 0.1 loss, alignment 数据能让 0.5B 模型提高 x% 的 task 能力,那么大概率这份数据也只能让 72B 模型提升 0.5x % 的 task 能力。

大模型背后的无数小模型

一个优秀的大模型,无论是在训练阶段,还是线上部署阶段,其背后默默付出的小模型都数不胜数。

  1. 数据质量分类器:llama3 和 qwen2 都提到了,他们的 pretrain 训练数据是有得分的,然后通过阈值来找出最高质量的训练数据,开源 pretrain 数据集 fineweb 也提到了他们给数据打分的工作。Good data makes good model performance!李沐大佬在他的视频里说到,llama3 的数据打分器是 RoBERTa,这很合理,效果又好、推理又快的分类模型确实还要看 BERT 家族。
  2. 数据 domain 分类器:垂直领域模型的 post_pretrain 工作,往往需要非常精准的数据配比,domain 数据的数据质量也需要非常优质。这也就是说,我们需要一个分类器,去提取海量数据中的 domain 数据,这个分类器最好还能把低质量的 domain 数据也视为非 domain 数据,通常承担这个工作的模型也是 BERT 家族。

GPT-2养成记

Training and Fine-Tuning GPT-2 and GPT-3 Models Using Hugging Face Transformers and OpenAI API 非常经典,入门必读。

  1. it does not implement neural networks from scratch(从头开始) but relies on lower-level frameworks PyTorch, TensorFlow, and FLAX.
  2. it heavily uses Hugging Face Hub, another Hugging Face project, a hub for downloadable neural networks for various frameworks.
  3. Model is a valid PyTorch model with some additional restrictions and naming conventions introduced by the transformers framework.
  4. Neural networks are not able to work with raw text; they only understand numbers. We need a tokenizer to convert a text string into a list of numbers. But first, it breaks the string up into individual tokens, which most often means “words”, although some models can use word parts or even individual characters. Tokenization is a classical natural language processing task. Once the text is broken into tokens, each token is replaced by an integer number called encoding from a fixed dictionary. Note that a tokenizer, and especially its dictionary, is model-dependent: you cannot use Bert tokenizer with GPT-2, at least not unless you train the model from scratch. Some models, especially of the Bert family, like to use special tokens, such as [PAD],[CLS], [SEP], etc. GPT-2, in contrast, uses them very sparingly.

different GPT versions differ pretty much only in size, minor details, and the dataset+training regime. If you understand how GPT-2 or even GPT-1 works, you can, to a large extent, understand GPT-4 also. PS: 不同的gpt从模型结构上差别不大。

以GPT-2 为例

  1. The transformer itself works with a D-dimensional vector at every position, for GPT-2 D=768.
  2. V=50257 is the GPT-2 dictionary size.

GPT-2 model使用

config = transformers.GPT2Config.from_pretrained(MODEL_NAME)
config.do_sample = config.task_specific_params['text-generation']['do_sample']
config.max_length = config.task_specific_params['text-generation']['max_length']
# print(config)
model = transformers.GPT2LMHeadModel.from_pretrained(MODEL_NAME, config=config)
# Tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME)
# Tokenize the input
enc = tokenizer(['The elf queen'], return_tensors='pt')
print('enc =', enc)
print(tokenizer.batch_decode(enc['input_ids']))

input_ids = enc['input_ids']
attention_mask = torch.ones(input_ids.shape, dtype=torch.int64)
# predicts the next token at each position. 也就是 input_ids = [v1,v2,v3] 输出为 [v20,v30,v4]]。 v20 是根据v1 生成的下一个token,大概率跟v2 不一样,v4 是根据v1,v2,v3 生成的。
out = model(input_ids=input_ids, attention_mask=attention_mask)
logits = out['logits']
# -1 在python list 里表示最后一个元素。
new_id = logits[:, -1, :].argmax(dim=1)
print(new_id)
print(tokenizer.batch_decode(new_id))

GPT2 源码解析 建议细读

input_ids = enc['input_ids']
for i in range(20):
    attention_mask = torch.ones(input_ids.shape, dtype=torch.int64)
    logits = model(input_ids=input_ids,attention_mask=attention_mask)['logits']                    
    new_id = logits[:, -1, :].argmax(dim=1)    # Generate new ID
    input_ids = torch.cat([input_ids, new_id.unsqueeze(0)], dim=1)  # input_ids 加入新生成的字符
i input_ids decoded text next token
0 [464,23878,16599] the elf queen 11
1 [464,23878,16599,11] the elf queen, 508
2 [464,23878,16599,11,508] the elf queen,who 550

微调GPT-2 model

GPT models are trained in an unsupervised way on a large amount of text (or text corpus). The corpus is broken into sequences, usually of uniform size (e.g., 1024 tokens each). PS: 预训练素材通常被切成特定长度的句子。The model is trained to predict the next token (word) at each step of the sequence. For example (here, we write words instead of integer encodings for clarity) :

position 1 2 3 4 5 6 7 8 9
input_ids The elf queen was wearing a cloak . [END]
labels elf queen was wearing a cloak . [END] [-1]

The labels are identical to input_ids, but shifted to one position to the left. Note that for GPT-2 in Hugging Face transformers this shift happens automatically when the loss is calculated, so from the user perspective, the tensor labels should be identical to input_ids. PS:常规深度模型的训练输入是 feature1,feature2,...,label,LLM也是,不过label 有时是由input_id得到的。

There are two ways to train Hugging Face transformers models: with the Trainer class or with a standard PyTorch training loop. We start with Trainer. PS: 下面代码基于GPT-2 已有的参数微调GPT-2,感觉模型微调 跟model = load_checkpoint(xx) 断点重训没啥区别,侧重点在于讲Transformers库原理。

class MyDset(torch.utils.data.Dataset):
    """A custom dataset that serves 1024-token blocks as input_ids == labels"""
    def __init__(self, data: list[list[int]]):
        self.data = []
        for d in data:
            input_ids = torch.tensor(d, dtype=torch.int64)
            attention_mask = torch.ones(len(d), dtype=torch.int64)
            self.data.append({'input_ids': input_ids, 'attention_mask': attention_mask, 'labels': input_ids})

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx: int):
        return self.data[idx]
def break_text_to_pieces(text_path: str, tokenizer: transformers.PreTrainedTokenizer, block_len: int = 512) -> list[str]:
    """Read a file and convert it to tokenized blocks, edding <|endoftext|> to each block"""
    with open(text_path) as f:
        text = f.read()
    chunk_len0 = block_len - 1  # Leave space for a TOKEN_ENDOFTEXT
    tokens = tokenizer.encode(text) # 原文本直接弄,够粗暴
    blocks = []
    pos = 0
    while pos < len(tokens):
        chunk = tokens[pos: pos + chunk_len0]
        chunk.append(TOKEN_ENDOFTEXT)
        blocks.append(chunk)
        pos += chunk_len0

    if len(blocks[-1]) < block_len:
        del blocks[-1]

    return blocks
def train_val_split(data: list[str], ratio: float):
    n = len(data)
    assert n >= 2
    n_val = max(1, int(n * ratio))
    return data[n_val:], data[:n_val]
def prepare_dsets(text_path: str, tokenizer: transformers.PreTrainedTokenizer, block_len: int):
    """Read the text, prepare the datasets """
    data = break_text_to_pieces(text_path, tokenizer, block_len)
    data_train, data_val = train_val_split(data, 0.2)
    return MyDset(data_train), MyDset(data_val)

# Load model and tokenizer
model = transformers.GPT2LMHeadModel.from_pretrained(MODEL_NAME)
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME)
training_args = transformers.TrainingArguments(output_dir="idiot_save/", learning_rate=1e-3,...)
# 传给trainer 的必须是预处理好的dataset(包含input_ids 等column)
trainer = transformers.Trainer(model=model,args=training_args,train_dataset=dset_train,eval_dataset=dset_val)
trainer.train()
# Save the model if needed
model.save_pretrained('./trained_model/')
tokenizer.save_pretrained('./trained_model/')
# Now our model is trained, try the generation
text = 'Natural language understanding comprises a wide range of diverse tasks'
batch = tokenizer([text], return_tensors='pt')
for k, v in batch.items():
    batch[k] = v.to(DEVICE)
out = model.generate(input_ids=batch['input_ids'], attention_mask=batch['attention_mask'], max_length=20)
print('GENERATION=', tokenizer.batch_decode(out.cpu()))

一把情况下 you are not allowed to train a model from scratch. Neither are you allowed to fine-tune on a text corpus or fine-tune with additional heads. The only type of fine-tuning allowed is fine-tuning on prompt+completion pairs, represented in JSONL format, for example:

{"prompt":"banana is ","completion":"yellow"}
{"prompt":"orange is ","completion":"orange"}
{"prompt":"sky is ","completion":"blue"}

How exactly is GPT-3 trained on such examples? We are not exactly sure (OpenAI is very secretive), but perhaps the two sequences of tokens are concatenated together, then GPT-3 is trained on such examples, but the loss is only calculated in the “completion” part. PS: 终于知道为何要分成两段,而不是喂一个文本就算了。labels 中prompt部分的位置都置为-100,-100表示在计算loss的时候会被忽略,这个由任务性质决定。