技术

Python ioc 从0到1构建一个db 上下文记忆 agentic chat 图数据库的一些考量 LLM一些探索 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LLM工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
上下文记忆 agentic chat bert rerank微调 大模型推理tips LLM一些探索 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 Multi-Agent探索 LLM工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

hbase 泛谈

2018年04月08日

前言

在计算机数据存储领域,一直是关系数据库(RDBMS)的天下,以至于在传统企业的应用领域,许多应用系统设计都是面向数据库设计,也就是先设计数据库然后设计程序,从而导致关系模型绑架对象模型,并由此引申出旷日持久的业务对象贫血模型与充血模型之争。业界为了解决关系数据库的不足,提出了诸多方案,比较有名的是对象数据库,但是这些数据库的出现似乎只是进一步证明关系数据库的优越而已。从 Google 的 BigTable 开始,一系列的可以进行海量数据存储与访问的数据库被设计出来,更进一步说,NoSQL 这一概念被提了出来。HBase 之所以能够具有海量数据处理能力,其根本在于和传统关系型数据库设计的不同思路。传统关系型数据库对存储在其上的数据有很多约束,学习关系数据库都要学习数据库设计范式,事实上,是在数据存储中包含了一部分业务逻辑。而 NoSQL 数据库则简单暴力地认为,数据库就是存储数据的,业务逻辑应该由应用程序去处理,有时候不得不说,简单暴力也是一种美。

整体设计

HBase 架构详解及数据读写流程 未读。

HBase 可伸缩架构

HBase 的伸缩性主要依赖其可分裂的 HRegion 及可伸缩的分布式文件系统 HDFS 实现。

HRegion 是 HBase 负责数据存储的主要进程,应用程序对数据的读写操作都是通过和 HRegion 通信完成。数据以 HRegion 为单位进行管理,也就是说应用程序如果想要访问一个数据,必须先找到 HRegion,然后将数据读写操作提交给 HRegion,由 HRegion 完成存储层面的数据操作。HRegionServer 是物理服务器,每个 HRegionServer 上可以启动多个 HRegion 实例。当一个 HRegion 中写入的数据太多,达到配置的阈值时,一个 HRegion 会分裂成两个 HRegion,并将 HRegion 在整个集群中进行迁移,以使 HRegionServer 的负载均衡。

HBase 的做法是按 Key 的区域进行分片,这个分片也就是 HRegion,和 Memcached 这类分布式缓存的路由算法不同。每个 HRegion 中存储一段 Key 值区间[key1, key2) 的数据,所有 HRegion 的信息,包括存储的 Key 值区间、所在 HRegionServer 地址、访问端口号等,都记录在 HMaster 服务器上。为了保证 HMaster 的高可用,HBase 会启动多个 HMaster,并通过 ZooKeeper 选举出一个主服务器。

调用时序图:应用程序通过 ZooKeeper 获得主 HMaster 的地址,输入 Key 值通过HMaster查找分片(不能像Memcached 通过路由算法直接算),获得这个 Key 所在的 HRegionServer 地址,然后请求 HRegionServer 上的 HRegion,获得所需要的数据。数据写入过程也是一样,需要先得到 HRegion 才能继续操作。

HRegion 会把数据存储在若干个 HFile 格式的文件中,这些文件使用 HDFS 分布式文件系统存储,在整个集群内分布并高可用。当一个 HRegion 中数据量太多时,这个 HRegion 连同 HFile 会分裂成两个 HRegion,并根据集群中服务器负载进行迁移。如果集群中有新加入的服务器,也就是说有了新的 HRegionServer,由于其负载较低,也会把 HRegion 迁移过去并记录到 HMaster,从而实现 HBase 的线性伸缩。

HBase 可扩展数据模型

传统的关系数据库为了保证关系运算(通过 SQL 语句)的正确性,在设计数据库表结构的时候,需要指定表的 schema 也就是字段名称、数据类型等,并要遵循特定的设计范式。这些规范带来了一个问题,就是僵硬的数据结构难以面对需求变更带来的挑战,有些应用系统设计者通过预先设计一些冗余字段来应对,但显然这种设计也很糟糕。那有没有办法能够做到可扩展的数据结构设计呢?不用修改表结构就可以新增字段呢?当然有的,许多 NoSQL 数据库使用的列族(ColumnFamily)设计就是其中一个解决方案。这是一种面向列族的稀疏矩阵存储格式,在创建表的时候,只需要指定列族的名字,无需指定字段(Column)。那什么时候指定字段呢?可以在数据写入时再指定。,实际上是把字段的名称和字段的值,以 Key-Value 的方式一起存储在 HBase 中。实际写入的时候,可以随意指定字段名称,即使有几百万个字段也能轻松应对。

使用列族的缺点:

  1. 在需要读取整条记录的时候,需要访问多个列族组合数据,效率会降低,可以通过字段冗余来解决一些问题。
  2. 只能提供Key值和全表扫描两种访问方式,很多情况下需要自己建二级索引。

Hbase通过列族划分数据的存储:HBase底层存储依赖于HDFS,HBase中table在行的方向上分割为多个region,它是HBase负载均衡的最小单元,可以分布在不同的RegionServer上,但是一个region不能拆分到多个RegionServer上。但是region不是HBase物理存储的最小单元,它由一个或者多个store组成,每个store保存一个column family即列族。每个store由一个memstore和多个storefile组成(这里的memstore其实是Sorted Memory Buffer,在WAL机制开启的情况下,不考虑块缓存,数据日志会先写入HLog,然后进入Memstore,最后持久化到HFile中),storefile由hfile组成是对hfile的轻量级封装,存储在hdfs上。每个列族在文件层面上是以单独的文件存储的。所以,每个column family可以看作是HBase中一个集中的存储单元。在生产中,我们设计列族时会将具有相似属性的比如IO特性或者将经常一起查询的列放到一个列族中,可以减少文件的IO、寻址时间,从而提高性能。

HBase 的高性能存储

Hbase原理、基本概念、基本架构

  1. 为了提高数据写入速度,HBase 使用了一种叫作 LSM 树的数据结构进行数据存储。
  2. 每行中的每一列在存储文件中都会以Key-value的形式存在于文件中。其中Key的结构为:行主键 + 列名,Value为列的值。存储数据按row-key排序。数据信息 和 结构信息(提高读写效率)混在一起,因为磁盘的缘故, 顺序写即可提高读效率。而查询/读效率 的提高花活儿就比较多了,并且通常 会降低写效率。 所谓 数据结构 或许精髓便是如此吧。

华为云毕杰山:HBase RowKey与索引设计 未读

LSM tree

LSM 树的全名是 Log Structed Merge Tree,翻译过来就是 Log 结构合并树。数据写入的时候以 Log 方式连续写入,然后异步对磁盘上的多个 LSM 树进行合并。LSM 树可以看作是一个 N 阶合并树。数据写操作(包括插入、修改、删除)都在内存中进行,并且都会创建一个新记录(修改会记录新的数据值,而删除会记录一个删除标志)。这些数据在内存中仍然还是一棵排序树,当数据量超过设定的内存阈值后,会将这棵排序树和磁盘上最新的排序树合并。当这棵排序树的数据量也超过设定阈值后,会和磁盘上下一级的排序树合并。合并过程中,会用最新更新的数据覆盖旧的数据(或者记录为不同版本)。在需要进行读操作时,总是从内存中的排序树开始搜索,如果没有找到,就从磁盘 上的排序树顺序查找。在 LSM 树上进行一次数据更新不需要磁盘访问,在内存即可完成。当数据访问以写操作为主,而读操作则集中在最近写入的数据上时,使用 LSM 树可以极大程度地减少磁盘的访问次数,加快访问速度。

还有一个写操作日志记录数据,所以数据不会丢,但是宕机恢复需要时间,就是根据日志恢复数据,这段时间部分数据更新访问不到。

[HBase] LSM树 VS B+树

LSM 算法的原理是什么? - 郭无心的回答 - 知乎

Log Structured Merge Trees(LSM) 原理

  1. 磁盘随机操作慢,顺序读写快
  2. 我们要避免随机读写,最好设计成顺序读写
  3. 顺序写的话,读取就很难受了 ==> 需要数据 结构(哈希、B+树等)提供 更多信息来 提高读效率 ==> 数据结构进而影响 写效率
  4. 比如mysql 的B+树,新增/更新数据,都要更新B+树的特定节点,学名叫:update-in-place。即 更新/新增一个数据,先找到数据所在的位置,然后进行操作。如果读写 数据key 值的随机性比较大的话,也就是key 分散在不同 树节点 中,则会引起 多次 树节点数据 载入到内存。
  5. 如果想不 update-in-place,一种方式是Copy-On-Write Tree。更新之前是一个B+树,更新之后,是一个新的B+树。但是因为每个写操作都要重写树结构,放大了写操作(干的活儿多了),降低了写性能。
  6. 另一种方式 将所有操作(主要是update 和 add) 顺序化。比如以前是将add1、update2、add3 这个操作序列 更新到B+树中,现在,原有的B+树还在,将add1、update2、add3 根据 key 组成一个新的B+树(此时在内存中操作B+树,所以不用担心效率),B+树到一定规模就刷新到磁盘上成一个文件。
  7. 以前对于一个数据表,只有一个B+树,现在有多个B+树文件(hbase)。读取时,就会逆序的一个一个检查B+树文件,直到key 被找到。 B+树文件越多,读取效率越低,因此会周期性的合并B+树文件
  8. 因为B+树文件 有一段在内存的空档期,为了防止数据丢失,自然就有一个WAL机制。

该策略 有一个问题是,大量的B+树文件被创建,在它们被合并之前,读效率很低。那么 出现了 Levelled Compaction(比如 LevelDB,其文件的存储结构可以参考redis 的skip list) ,通过优化 合并过程来提高 性能。