技术

agentic chat 图数据库的一些考量 LLM一些探索 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LLM工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
agentic chat bert rerank微调 大模型推理tips LLM一些探索 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 Multi-Agent探索 LLM工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

数据集管理fluid

2022年10月27日

简介

Fluid 项目当前主要关注数据集编排和应用编排这两个重要场景。

  1. 数据集编排可以将指定数据集的数据缓存到指定特性的 Kubernetes 节点。PS:任务编排 是把任务调度到哪个node 上,数据编排即把 数据调度到哪个node上。
    1. 移动数据,先不考虑 Alluxio 这类组件,可以认为 fluid 支持将xx 文件 从 远程磁盘/oss/hdfs 移动 k8s 某个node 的xx 目录下,不用的时候(比如删除dataset时)再把这个文件清理掉。
    2. 单论访问远端文件, 直接用 pvc 也可以,但性能不够,pvc 仅仅是把pod 跟远端存储搭个桥梁,访问接口统一了。所以,我们还是想 将文件挪到 k8s 集群本地来,在k8s 集群(一般即计算集群)和 存储集群异地的时候尤其需要,数据移到了本地就得做 生命周期管理,且本地文件仍以pvc 方式提供给pod 访问。
    3. 为了效率,通常不会直接移动文件,且对于AI 等任务来说,k8s node磁盘也放不下训练数据,所以引入了Alluxio等组件。Fluid 实现了 pvc 接口,让 pod 内可以像使用本地磁盘一样无感知 Fluid 提供元数据和数据分布式分层缓存,以及高效文件检索功能(因为缓存了元数据)。
  2. 应用编排将指定该应用调度到可以或已经存储了指定数据集的节点上。

pvc 将各种存储融入到k8s ,fluid实际做的是把alluixo类似的分布式缓存系统,以统一的方式做到可以被k8s感知和调度;

背景

如何基于 Kubernetes 构建云原生 AI 平台在云上通过云原生架构运行 AI、大数据等任务,可以享受计算资源弹性的优势,但同时也会遇到,计算和存储分离架构带来的数据访问延迟和远程拉取数据带宽开销大的挑战。尤其在 GPU 深度学习训练场景中,迭代式的远程读取大量训练数据方法会严重拖慢 GPU 计算效率。另一方面,Kubernetes 只提供了异构存储服务接入和管理标准接口(CSI,Container Storage Interface),对应用如何在容器集群中使用和管理数据并没有定义。在运行训练任务时,数据科学家需要能够管理数据集版本、控制访问权限、数据集预处理、加速异构数据读取等。但是在 Kubernetes 中还没有这样的标准方案,这是云原生容器社区缺失的重要能力之一。

Fluid 助力阿里云 Serverless 容器极致提速举例来说,如果我们想将 AI 推理服务应用部署在 Serverless 架构下,每个服务应用启动前必须将存放在外部存储系统的 AI 模型首先拉取到本地内存中。考虑到近年来 AI 大模型已经成为业界主流,让我们假设这个 AI 模型的大小为 30GB,并且存储于 OSS 对象存储服务中,如果需要同时启动 100 个这样的 AI 推理服务应用,那么总共的数据读取量就是 3000GB。OSS 存储默认的数据访问限速是 10Gbps,这就意味着 100 个应用都需要等待 2400 秒(3000GB * 8 / 10Gbps)才可以真正开始对外提供服务。

ACK 云原生 AI 套件对“计算任务使用数据的过程”进行抽象,提出了弹性数据集 Dataset 的概念,并作为“first class citizen”在 Kubernetes 中实现。围绕弹性数据集 Dataset,ACK 创建了数据编排与加速系统 Fluid,来实现 Dataset 管理(CRUD 操作)、权限控制和访问加速等能力。Fluid 可以为每个 Dataset 配置缓存服务,既能在训练过程中将数据自动缓存在计算任务本地,供下轮迭代计算,也能将新的训练任务调度到已存在 Dataset 缓存数据的计算节点上运行。再加上数据集预热、缓存容量监控和弹性伸缩,可以大大降低任务远程拉取数据的开销。Fluid 可以将多个不同类存储服务作为数据源(比如 OSS,HDFS)聚合到同一个 Dataset 中使用,还可以接入不同位置的存储服务实现混合云环境下的数据管理与访问加速。

重新定义容器化 Serverless 应用的数据访问Fluid is an open source Kubernetes-native Distributed Dataset Orchestrator and Accelerator for data-intensive applications, such as big data and AI applications.云原生环境与更早的大数据处理框架在设计理念和机制上存在天然分歧。深受Google三篇论文GFS、MapReduce、BigTable影响的Hadoop大数据生态,从诞生之初即信奉和实践“移动计算而不是数据”的理念。因此以Spark,Hive,MapReduce为代表的数据密集型计算框架及其应用为减少数据传输,其设计更多地考虑数据本地化架构。但随着时代的变迁,为兼顾资源扩展的灵活性与使用成本,计算和存储分离的架构在更新兴的云原生环境中大行其道。因此云原生环境里需要类似Fluid这样的一款组件来补充大数据框架拥抱云原生以后的数据本地性的缺失

计算和存储分离的模式使得以往我们认为非常特殊的服务可以被无状态化,可以像正常服务一样被纳入 devops 体系中,而基于 Fluid 的数据编排和加速系统,则是实践计算和存储分离的一个切口。

思路

Fluid 把数据集的准备工作从整个流程里单独抽取了出来,利用底层的 K8s 分配需要的资源,例如缓存系统需要的内存和磁盘资源。资源分配出来后,可以选择性的发起元数据和数据的预热工作。等预热工作完成之后,再由 K8s 调度计算资源运行训练任务。训练任务可以选择是否亲和,所谓亲和是让缓存的节点和计算的节点是同一批节点,这个能带来什么样的好处待会儿会讲到。训练完成后,用户可以视情况而定决定何时回收 Fluid 占用的资源,这个过程和计算也是独立的。

Fluid 的实质是利用计算集群的空闲资源(CPU,Memory,Disk)和特定场景的抽象假设简化问题

  1. 通过数据分流(Data Offloading)降低中心存储的压力;就近缓存(Tiered Locality Cache)和亲和性调度(Cache Locality Scheduling)提升数据访问性能;Fluid 会把需要访问的数据缓存到与应用 Pod 更近的分布式缓存系统(例如:JindoFS、JuiceFS、Alluxio 等)中,于是,与缓存系统位于同一 VPC 网络的应用 Pod,就能够以远比直接访问中心存储带宽更高的 VPC 内网带宽进行数据访问。
  2. 在计算资源高并发访问数据的时候,通过自动化扩容缓存集群提供弹性 IO 吞吐能力。由于对接的是分布式缓存系统,所以当单个缓存系统 Worker 节点提供带宽不足时,可将分布式缓存系统扩容,从而实现数据访问带宽的弹性伸缩,匹配 Serverless 场景下的计算资源弹性。 将底层存储系统的有限带宽,扩展到了可以弹性扩容的 Kubernetes 集群内。这个集群内的可用带宽取决于分布式缓存的节点数量,从而可以根据业务需求,及时进行伸缩,提供灵活而高效的 I/O 处理。

Dataset 和 Runtime,它们分别代表需要访问的数据源和对应的缓存系统。

  1. Dataset,它代表需要访问的数据源,比如OSS 存储桶中的一个子目录
  2. Runtime,代表对应的缓存系统,比如Alluxio 当用户创建了 Dataset 和对应的 Runtime 后,Fluid 会接管后续的所有工作。首先,Fluid 会自动完成对应的缓存系统的配置,然后,它会自动拉起缓存系统的组件。接着,Fluid 会自动创建一个 PVC(Persistent Volume Claim)。当这些准备工作完成后,希望访问模型数据的推理应用只需要挂载这个 PVC,就可以从缓存中读取模型数据。

实现

Fluid 工作原理解析Fluid 的整个架构主要分为两个部分。

  1. Controller,包括 RuntimeController 及 DatasetController,分别管理 Runtime 和 Dataset 的生命周期,二者共同作用,以 helm chart 为基础,快速搭建出一套完整的分布式缓存系统,通常是 master + worker + fuse 的形式,向上提供服务。master 是缓存系统的核心组件,通常是一个 pod;worker 是组成缓存集群的组件,可以是多个 pod,可以设置个数;fuse 是提供 POSIX 接口服务的组件;
  2. 调度器,在有缓存的情况下,调度器会根据 worker 的节点信息,使得上层应用 pod 尽可能调度到有缓存的节点。

整个过程如下,Dataset Controller 监听 Dataset,Runtime Controller 监听对应的 Runtime,当二者一致时,RuntimeController 会启动 Engine,Engine 创建出对应的 Chart(Runtime Controller 启动 JuiceFS 的环境的方法是启动一个 helm chart,其渲染的 values.yaml 以 ConfigMap 的形式保存在集群中),里面包含 Master、Worker、FUSE 组件。同时,Runtime Controller 会定期同步数据(如总数据量、当前使用数据量等)状态更新 Dataset 和 Runtime 的状态信息。

下面以 JuiceFS 为例,搭建一套 Fluid 环境,搭建好后组件如下:

$ kubectl -n fluid-system get po
NAME                                         READY   STATUS    RESTARTS   AGE
csi-nodeplugin-fluid-fczdj                   2/2     Running   0          116s
csi-nodeplugin-fluid-g6gm8                   2/2     Running   0          117s
csi-nodeplugin-fluid-twr4m                   2/2     Running   0          116s
dataset-controller-5bc4bcb77d-844rz          1/1     Running   0          116s
fluid-webhook-7b4f48f647-s8c9w               1/1     Running   0          116s
juicefsruntime-controller-5d95878575-hj785   1/1     Running   0          116s
# JuiceFS 相对其他 Runtime 的特殊之处在于其没有 master 组件
jfsdemo-worker-0   1/1     Running   0              58m
jfsdemo-worker-1   1/1     Running   0              58m
# FUSE 组件
jfsdemo-fuse-pd9zq   1/1     Running   0              25s

各个组件的作用:

  1. dataset-controller:管理 Dataset 的生命周期
  2. juicefsruntime-controller:管理 JuiceFSRuntime 生命周期,并快速搭建 JuiceFS 环境;
  3. fluid-webhook:实现 Fluid 应用的缓存调度工作;
  4. csi-nodeplugin:实现各引擎的挂载路径与应用之间的连接工作;

在 Fluid 中,数据加速对应的是 DataLoad,也是一个 CRD,DatasetController 负责监听该资源,根据对应的 DataSet 启动 Job,执行数据预热操作。同时 Runtime Controller 向 Worker 同步缓存的数据信息,并更新 Dataset 的状态。

大致理解:Dataset 表述了要访问哪些数据源文件,对pod 提供了pv和pvc ,对下封装了缓存、数据集调度等能力。

  1. fluid 开发了对应的csi ,Dataset 和 Runtime Bound 之后,fluid 会自动创建与 Dataset 同名的pvc 和 pvc
  2. pod 调度到一个node 上之后,因为pod 声明了和dataset 同名的pvc,fluid csi 在node 上准备一个目录(pv),走csi 流程挂到pod 里。
  3. 此外 在node上启动一个fuse pod(或者说,fuse pod 将挂载点暴露在宿主机上,然后 csi 将挂载点 bind 到应用 pod 里)。pod 里程序对这个目录的读写请求 都转给了fuse pod,fuse 将文件io 转为网络io 访问真实的runtime。PS:

其它

Fluid 助力阿里云 Serverless 容器极致提速 展示了创建Dataset 访问oss 以及进行数据预热等操作。

在混合云下,我们将Kubernetes与Fluid结合后性能提升了30%