技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


kubernetes yaml配置

2018年11月04日

简介

Kubernetes 跟 Docker 等很多项目最大的不同,就在于它不推荐你使用命令行的方式直接运行容器(虽然 kubectl run 支持),而是采用yaml/json 文件的方式。最直接的好处是,你会有一个文件能记录下 Kubernetes到底“run”了什么。使用文件的优点归纳起来

  1. Convenience,比如kubectl create -f https://k8s.io/examples/application/deployment.yaml --record 命令行可这样玩不了
  2. Maintenance, 比如使用git 管理
  3. Flexibility,也就是说表达能力更强

简化 Kubernetes Yaml 文件创建由于Yaml文件格式比较复杂,即使是老司机有时也不免会犯错或需要查询文档,因此可以dry-run 一下,kubectl run myapp --image=nginx --dry-run -o yaml 会输出模拟运行 nginx 镜像的yaml 文件内容,copy-paste 即可。或者你可以 kubectl get deployment my-nginx -o yaml 查看一个已有 kubernetes object 的配置,依葫芦画瓢。

了解kubernetes yaml 主要从两个维度:

  1. yaml 文件的普遍特征
  2. Kubernetes Object 的共同特征

yaml 的一些知识

Introduction to YAML: Creating a Kubernetes deployment

  1. YAML, which stands for Yet Another Markup Language,yaml 是一个标记语言
  2. YAML is a superset of JSON, yaml 是json 的超集
  3. there are only two types of structures you need to know about in YAML:

    • Lists
    • Maps

yaml Maps

apiVersion: v1
kind: Pod
metadata:
  name: rss-site
  labels:
    app: web
  1. Maps let you associate name-value pairs
  2. 只要“平行/级”,就是同一个层级的key-value。有了缩进,就表示一个map value。层级之间缩进空格数任意,哪怕一个空格也可以,但不要使用tab。 For example, name and labels are at the same indentation level, so the processor knows they’re both part of the same map; it knows that app is a value for labels because it’s indented further.

yaml list

args
  - sleep
  - "1000"
  - message
  - "Bring back Firefly!"

you can have virtually any number of items in a list, which is defined as items that start with a dash (-) indented from the parent.

Describing a Kubernetes Object

Understanding Kubernetes Objects

Kubernetes Object

Kubernetes Objects are persistent entities in the Kubernetes system. A Kubernetes object is a “record of intent”–once you create the object, the Kubernetes system will constantly work to ensure that object exists.

  1. What containerized applications are running (and on which nodes)
  2. The resources available to those applications
  3. The policies around how those applications behave, such as restart policies, upgrades, and fault-tolerance

Every Kubernetes object includes two nested object fields that govern the object’s configuration: the object spec and the object status.

  1. The spec, which you must provide, describes your desired state
  2. The status describes the actual state of the object, and is supplied and updated by the Kubernetes system. pod 状态可以使用 kubectl get pod pod_name -o yaml 来查看,或者 kubectl describe pod pod_name

At any given time, the Kubernetes Control Plane actively manages an object’s actual state to match the desired state you supplied. 基于这种机制 不管是kubectl create -f 还是 kubectl replace -f 都可以是 kubectl apply -f,这或许也是kubernetes 声明式api 的一个体现吧。

yaml 配置共同点

  1. apiVersion - Which version of the Kubernetes API you’re using to create this object
  2. kind - What kind of object you want to create
  3. metadata - Data that helps uniquely identify the object, including a name string, UID, and optional namespace
  4. spec - The precise format of the object spec is different for every Kubernetes object, and contains nested fields specific to that object. 每一个 Kubernetes object 就得参见 Kubernetes API Reference

metadata 与 spec 分别代表了 共性与个性,数据表设计也可以参照这个思路

PodPreset

开发人员习惯的写的,是最简单的pod

apiVersion: v1
kind: Pod
metadata: 
	name: website 
	labels:
		app: website 
		role: frontend
spec: 
	containers: 
		- name:website 
		  image: nginx
		  ports: 
			- containerPort:80

但对运维来说,在实际环境中还需添加大量的配置,此时,运维可以事先定义一个PodPreset.yaml,并创建一个PodPresetkubectl create -f preset.yaml。 之后开发创建的pod(有一个规则匹配) 都会自动加上 preset.yaml 指定的配置。

kubectl

在命令行中,所有 key-value 格式的参数,都使用“=”而非“:”表示。

笔者个人微信订阅号