技术

Agent与软件开发 提升Agent能力——上下文工程 llm评测 rl微调 分布式Agent与A2A deepresearch梳理 mcp学习 SSE 和 WebSocket 是什么? AutoGen学习 Python ioc 从0到1构建一个db 上下文记忆 agentic rag 图数据库的一些考量 推理LLM梳理 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 另一种微服务架构Multi-Agent Python虚拟机 LangGraph工作流编排 Python实践 增强型 LLM——Agent 激发LLM涌现——提示工程 LLM微调理论 大佬谈LLM LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

大模型infra OpenTelemetry及生态 大模型可观测性 grpo演进 rlhf演进 agent框架 reward演进 大模型RLHF框架 rl框架 GPU与CUDA RL闲谈 MCTS与LLM rl从Policy Gradient(策略梯度)到PPO到GRPO 从Transformer到DeepSeek bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
Agent与软件开发 大模型infra 提升Agent能力——上下文工程 llm评测 大模型可观测性 rl微调 grpo演进 rlhf演进 agent框架 分布式Agent与A2A reward演进 deepresearch梳理 mcp学习 大模型RLHF框架 rl框架 GPU与CUDA RL闲谈 MCTS与LLM rl从Policy Gradient(策略梯度)到PPO到GRPO AutoGen学习 从Transformer到DeepSeek 上下文记忆 agentic rag bert rerank微调 大模型推理tips 推理LLM梳理 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 另一种微服务架构Multi-Agent LangGraph工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 增强型 LLM——Agent 激发LLM涌现——提示工程 LLM微调理论 大佬谈LLM LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

大模型infra

2025年07月20日

简介

简介(未完成)

程序员必须了解的AI系统设计与挑战知识 硬件演进 ==> 软件演进 ==> 训练挑战 ==> 推理挑战。

硬件演进

从CPU为中心到GPU为中心。传统基础设施以 CPU 为核心,通过多线程和微服务构建分布式系统,处理高并发请求(如 Web 服务)。这些都有成熟的方法论了(如”海量服务之道”)。主要工作是逻辑事务的处理,瓶颈在网络 I/O 和 CPU 核心数量。而 AI Infra 以 GPU 为核心,其设计目标从逻辑事务处理转向高吞吐浮点计算。此时CPU 多线程被 GPU 并行计算替代,内存被显存替代。为什么 GPU 会成为核心?是因为 LLM 大模型每次生成一个 token,都需要读取全量的模型参数。传统的 CPU + 内存的算力和带宽无法满足如此恐怖的计算密度,计算和通信都必须转移(offload)到 GPU 内完成。CPU 成为数据搬运工和“辅助处理器”。为了更直观地理解这个计算密度,我们做一个简单的计算。不考虑计算的延时,LLM 大模型生成一个 token 的耗时公式计算为:计算耗时 = 模型参数 * 数据精度 / 显存带宽。以 DeepSeek-R1-671B-A37B-FP8 模型为例,计算一个 token 耗时,H20 为 37B × 1byte ÷ 4000GB/s = 9ms,如果是 CPU 则为 37B × 1byte ÷ 64GB/s = 578ms。传统 Infra 的分布式理念貌似在 AI 时代失效了。传统 Infra 追求横向扩展,而 AI Infra 呈现 “AI 大型机”特性,是因为传统后台服务的可以容忍毫秒级延迟,但 AI 集群不行,GPU 的算力是 CPU 的数百倍,微秒级的延时等待也会造成很大的算力损耗,需要硬件的高度集成。

软件演进

相比传统后台应用的增删查改,AI 应用的新范式是模型训练和推理。模型训练是指通过海量数据拟合出一个复杂的神经网络模型,推理就是利用训练好的神经网络模型进行运算,输入的新数据来获得新的结论。

  1. 工欲善其事,必先利其器。传统后台应用依赖 tRPC 或 Spring 等微服务框架,帮助我们屏蔽负载均衡、网络通信等底层细节,我们可以把精力放在业务实现上。与之相似,AI 应用则依赖深度学习框架。如果没有深度学习框架(比如PyTorch),我们就可能陷入在茫茫的数学深渊中,挣扎于痛苦的 GPU 编程泥潭里。得益于动态计算图、自动微分和丰富的 Tensor 操作算子,PyTorch 能帮助我们快速实现模型设计。只需要描述模型结构+待学习的网络参数,不需要关心数学计算和 GPU 编程的细节。
  2. GPU 编程。绝大部分的 AI 应用,的确不需要我们手写数学计算的 GPU 代码。但为了满足模型创新的需求,有必要学习 GPU 编程。例如 Meta 发布的 HSTU 生成式推荐模型,核心的 hstu_attn 计算,如果直接用 PyTorch 框架算子组合实现,则时间复杂度为 O(M * N²) ,其中 M 和 N 是一个数量级,相当于O(N³) 。但是通过自定义内核,可以优化到 O(N²)。

模型训练的挑战

我们一直追求更大的模型,DeepSeek-R1 有数千亿参数,使用了数十万亿 token 的训练数据,涉及算力、存储、通信等多维度的工程挑战。有了 PyTorch 深度学习框架,只是 AI 应用落地的万里长征第一步。接下来我们将讨论深度学习框架之上的模型训练的挑战,即建设分布式 GPU 集群的原因。

  1. 存得下。
    1. 显存刺客:中间激活。在前向传播结束后出现一个显存占用(中间激活)的尖峰,远大于模型参数本身。
    2. 传统后台服务使用分片(Sharding)策略解决单机存不下的问题。与之相似,AI Infra 提出“模型并行”,就是将单个大模型拆分为多个子模块,并分布到不同 GPU 上协同工作,通过通信来共享数据。
  2. 算得快。简单的机器堆叠,算力不一定有线性的增长。因为分布式训练并不是简单地把原来一个 GPU 做的事情分给多个 GPU 各自做。需要协调多个 GPU 机器计算任务分配,GPU 机器之间的数据传输会引入网络IO和通信开销,降低训练速度。
    1. 通信计算重叠。传统后台服务我们通过多线程或异步 IO 避免阻塞 CPU 主线程,与之相似,AI Infra 提出通信计算重叠的方法论。GPU 编程模型中有流(stream)的概念,一个流表示一个 GPU 操作队列,该队列中的操作将以添加到流中的先后顺序而依次执行。不同流之间可以并行执行。那么通过令计算和通信操作加入不同的流中,可以做到二者的执行在时间上重叠。PS: 一个wrap阻塞了就跑另一个wrap?

模型推理的挑战

主要是2个挑战:高吞吐(降本),低延时(增效,用户体验)。

  1. 降低延时。传统后台服务我们使用链接复用、缓存、柔性等技术降低系统响应时间。AI Infra 也有相似的做法。
    1. 在 GPU 编程模型中,CPU 和 GPU 是异构的,CPU 通过 API(例如 CUDA API) 向 GPU 提交任务,然后异步等待 GPU 的计算结果返回。GPU 收到任务后,会执行内核启动、内存拷贝、计算等操作。这个过程中,涉及到 CPU 与 GPU 之间的通信、驱动程序的处理以及 GPU 任务的调度等环节,会产生一定的延迟。模型推理需要执行大量重复的 GPU 操作,每个的 GPU 操作都要重复执行上诉环节,这些非核心的 GPU 开销会成倍数地放大,影响最终响应时间。在传统后台服务,我们使用 Redis 的 Lua 脚本封装多个 Redis 操作和计算逻辑,一次提交,减少网络开销。与之相似,AI Infra 利用 CUDA Graph 技术将多个 GPU 操作转化为一个有向无环图(DAG),然后一次性提交整个 DAG 提交到 GPU 执行,由GPU自身来管理这些操作的依赖关系和执行顺序,从而减少 CPU 与 GPU 之间的交互开销。
    2. KV Cache:空间换时间。
    3. 流式响应
  2. 提高吞吐量。实现 AI 应用的高吞吐本质上就是提高昂贵的 GPU 的利用率,让 GPU 单位时间能完成更多的任务。
    1. 传统批处理。其实传统后台服务也大量使用了批处理,例如 Redis 的 MGet 命令,单次请求就完成所有 key 的获取,将 N 次网络往返(RTT)压缩为1次。与之相似,模型推理的批处理就是将多个输入样本打包(batch),将原本串行的 N 次轻量的推理计算,合并为 1 次重量的计算,实现单位时间内处理更多的请求,提高了 GPU 利用率。传统批处理类似 “固定班次的公交车”:乘客(请求)必须等待发车时间(组建一个batch),发车后所有乘客同步前进。即使有乘客提前下车(短请求完成),车辆仍需等待所有乘客到达终点(长请求完成)才能返程接新乘客。传统批处理存在着资源浪费:GPU 要等待长请求处理完,不能处理新的请求而空闲。这个问题在 LLM 应用领域显得特别突出,因为不同用户请求 Prompt,模型的回答结果长度差异巨大,如果使用传统批处理,GPU 空闲率很高。这个本质上是个任务调度问题,传统后台服务我们使用工作窃取算法(work stealing)解决线程空闲问题,与之相似,AI Infra 提出“连续批处理”解决这个问题。
    2. 连续批处理。连续批处理类似“随时随地拼车的顺风车”,每辆车(GPU)在行程中可随时上/下客。新乘客(请求)直接加入当前车辆的空位(空闲计算单元),已完成的乘客立即下车(释放资源)。