技术

mosn有的没的 负载均衡泛谈 《Mysql实战45讲》笔记 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubernetes crd 及kubebuilder学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


Codis源码分析

2019年04月23日

前言

github 地址CodisLabs/codis 基于go 语言开发,是一个很好的了解go 及 分布式开发的项目。

Codis 使用文档 Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有显著区别 (不支持的命令列表), 上层应用可以像使用单机的 Redis 一样使用, Codis 底层会处理请求的转发, 不停机的数据迁移等工作, 所有后边的一切事情, 对于前面的客户端来说是透明的, 可以简单的认为后边连接的是一个内存无限大的 Redis 服务。

集群解决方案——Smart Client VS Proxy

为什么大厂都喜欢用 Codis 来管理分布式集群?

Redis多实例通常有3个使用途径

  1. 客户端静态分片,一致性哈希;也称为Smart Client
  2. 通过Proxy分片,即Twemproxy;
  3. 官方的Redis Cluster

服务端的改造来自官方,暂时不考虑, 所以一般争论也在Smart Client 和 Proxy 之间。

需求目标

  1. 支持分片
  2. Zookeeper ==> Proxy 无状态
  3. 平滑扩容/缩容
  4. 扩容对用户透明
  5. 图形化监控一切

Proxy拥有更好的监控和控制,同时其后端信息亦不易暴露,易于升级;而Smart Client拥有更好的性能(因为没有中间层),及更低的延时,但是升级起来却比较麻烦。从各种大厂的方案看,都比较推崇Proxy

整体结构

  1. codis-proxy 。客户端连接的Redis代理服务,本身实现了Redis协议,表现很像原生的Redis (就像 Twemproxy)。一个业务可以部署多个 codis-proxy,其本身是无状态的。
  2. codis-server。Codis 项目维护的一个Redis分支,加入了slot的支持和原子的数据迁移指令。

源码分析

几个好奇

  1. proxy 的基本逻辑就是转发,既做服务端也做客户端,在代码上如何体现?
  2. 如何自动做rebalance?slot hash关键逻辑是啥?
  3. 和zk的协作方式是啥?

主要是两个package

  1. cmd 命令入口,包含main.go文件,通过命令行 启动 socket server 程序等,command-line interfaces 工具用的是 docopt-go
  2. pkg 各个组件的源码文件。

codis-proxy 模块一共就二三十个go文件,非常适合做go 语言入门

路由规则

看一个codis-dashboard 例子

有两个Codis-Proxy,4个Redis实例,分属于两个Group(G1和G2)

slot 一共1024个,分属于两个Group,其中第一个Group 是offline 状态

请求处理

参见 Codis源码解析——proxy的启动 系列

  1. Proxy每接到一个redis请求,就创建一个独立的session进行处理
  2. codis将请求与结果关联起来的方式,就是把结果当做request的一个属性
  3. Session核心就是创建loopReader和loopWriter。loopReader负责读取和分发请求到后端,loopWriter负责合并请求结果,然后返回给客户端。
  4. forwardSync将指定的slot、request、键的哈希值,经过process得到实际处理请求的BackendConn,然后把请求放入BackendConn的chan *Request中,等待处理
  5. backendConn负责实际对redis请求进行处理,loopWriter负责从backendConn.input中取出请求并发送,loopReader负责遍历所有请求,从redis.Conn中解码得到resp并设置为相关的请求的属性

深入浅出百亿请求高可用Redis(codis)分布式集群揭秘 还是腾讯的大神画的有水平

其它

Codis作者黄东旭细说分布式Redis架构设计和踩过的那些坑们

架构师们是如此贪心,有单点就一定要变成分布式,同时还希望尽可能的透明:P。就MySQL来看,从最早的单点到主从读写分离,再到后来阿里的类似Cobar和TDDL,分布式和可扩展性是达到了,但是牺牲了事务支持,于是有了后来的OceanBase。Redis从单点到Twemproxy,再到Codis,再到Reborn。到最后的存储早已和最初的面目全非,但协议和接口永存,比如SQL和Redis Protocol

我认为,抛开底层存储的细节,对于业务来说,KV,SQL查询(关系型数据库支持)和事务,可以说是构成业务系统的存储原语。为什么memcached/Redis+mysql的组合如此的受欢迎,正是因为这个组合,几个原语都能用上,对于业务来说,可以很方便的实现各种业务的存储需求,能轻易的写出「正确」的程序。但是,现在的问题是数据大到一定程度上时,从单机向分布式进化的过程中,最难搞定的就是事务