技术

agentic chat 图数据库的一些考量 LLM一些探索 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LLM工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
agentic chat bert rerank微调 大模型推理tips LLM一些探索 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 Multi-Agent探索 LLM工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

图数据库的一些考量

2024年10月12日

前言(未完成)

图数据模型是一种用于表示实体(节点)及其之间关系(边)的数据结构,在处理复杂关系数据时表现出色,尤其适合社交网络、推荐系统、知识图谱等应用场景。

  1. 直观的数据模型:图模型以节点(代表实体)、边(代表关系)和属性(附加信息)为基础,直接映射现实世界中的对象及其关系,使得数据结构更加直观易懂。
  2. 高效的关系查询:由于直接在图中表达实体间的关系,图模型可以快速地进行复杂的路径查询、模式匹配等操作,这些在传统关系型数据库中可能需要多表连接和复杂的SQL语句才能完成。
  3. 支持灵活的数据结构:图数据库对数据结构的约束较少,容易适应不断变化的数据模型,特别适合那些关系复杂且多变的应用场景。
  4. 强大的遍历能力:强大的图遍历功能能够轻松实现多跳关系的查询,非常适合发现数据中的隐藏关联和模式。

目前使用的图模型有两种:资源描述框架(RDF)模型和属性图(Property Graph/LPG)模型。

局限性

  1. 资源消耗:与关系型数据库相比,图数据库在存储空间和内存使用上可能更为昂贵,尤其是在处理大量节点和边的密集图时。
  2. 数值计算和聚合操作:虽然图模型在处理复杂关系数据方面表现出色,但在执行大规模的数值计算、统计分析或聚合操作时可能不如传统关系型数据库或专门的分析工具高效。
  3. 学习曲线:对于习惯于使用 SQL 的开发者来说,学习图数据库的思维方式可能需要一定时间,尤其是对于复杂的图遍历和模式匹配。
  4. 事务处理限制:但在某些高级特性(如分布式事务)的支持上可能不如成熟的 SQL 数据库,这可能限制了它在某些金融或银行领域中的应用。
  5. 数据导入/导出:由于图模型的独特性,将现有数据导入图数据库或从图数据库导出数据到其他系统会比关系型数据库更复杂,需要专门的 ETL 工具或自定义脚本。

Neo4j

概念

图是一种用于对对象之间的成对关系进行建模的数学结构。它由两个主要元素组成:节点和关系。

  1. 节点:节点可以看作是传统数据库中的记录。每个节点代表一个对象或实体,例如一个人或一个地方。节点按标签分类,这有助于根据其角色对其进行分类和查询,例如“客户”或“产品”。
  2. 关系:这些是节点之间的连接,定义不同实体之间的交互或关系。例如,一个人可以通过“EMPLOYED_BY”关系与公司建立联系;或者通过“LIVES_IN”关系与某个地方建立联系。 除了节点和关系之外,还包括属性、标签和路径特征来表示和存储数据。
  3. 属性:节点和关系都可以包含属性,即以键值对形式存储的属性。这些属性提供有关实体的特定详细信息,例如人的姓名或年龄,或关系的长度。
  4. 标签:标签是分配给节点的标记,用于将节点分为不同类型。单个节点可以有多个标签,有助于更动态、更灵活地查询图。
  5. 路径:路径描述节点序列和连接节点的关系。它们表示图中的路线,显示不同节点如何互连。路径在查询中很有用,可以揭示节点之间的关系,例如在社交网络中发现从一个人到另一个人的所有可能路线。

使用/Cypher

Cypher 的基本概念是它允许你要求数据库查找与特定模式相匹配的数据。通俗地说,我们可能会要求数据库“找到类似这样的东西”,而我们描述“类似这样的东西”的方式是使用 ASCII 字符来绘制它们。

Cypher语言主要分为增删改查(CRUD)四个部分,也可抽象成读和写两个部分。但是不能同时读和写数据,每个部分要么匹配,要么更新。当需要使用聚合进行过滤时,必须使用WITH将读和写连接起来。

  1. 读:MATCH, OPTIONAL MATCH, WHERE, START, 聚合, LOAD CSV
    1. OPTIONAL MATCH 相当于SQL中的OUTER JOIN,找的和MATCH一样,找不到的项用null代替。
    2. 要过滤查询结果可以使用WHERE关键字,然后跟上过滤表达式。
  2. 写:CREATE, MERGE, SET, DELETE, REMOVE, FOREACH, CREATE, UNIQUE
    1. CREATE 用于创建点和边。创建数据不是INSERT,而是CREATE,因为图数据里不是简单地插入数据,而是创建节点、关系、属性或模式。使用逗号分隔。注意创建边的前提是,首先要找到边的两个节点!使用CREATE时,模式中所有不存在的部分都会被创建。
        //创建边
        MATCH (a:Person),(b:Person) WHERE a.name = 'Gaoj' AND b.name = 'Neoob'
        CREATE (a)-[r:RELATION1]->(b) RETURN a,b,r;
      
    2. 更新属性使用SET,删除属性用REMOVE
    3. 删除节点或关系使用DELETE
  3. 通用: RETURN, ORDER BY , LIMIT , SKIP, WITH, UNWIND, UNION , CALL
    1. WITH将分段的查询连接在一起,传递给另外一部分作为查询的开始。WITH 会影响查询结果集里的变量,WITH 语句外的变量不会传递到后续查询中。PS: match 后跟的是模式,不适合再跟count 等等计算了,所以用with 帮了一手。如果没有WITH子句,每个查询部分(或子句)将独立执行,不会保留前一个部分的结果或变量。
    2. UNION。将多个查询组合起来。和SQL类似,多个查询的列的名称和数量要一致!

一看就会的 Neo4j Cypher 语法

Cypher Language

元素 图数据库 元素 关系型数据库
(matrix) entity
点标签 (matrix:Movie) 表名 create table Movie (...)
点属性 {title,release,tagline} 表字段 create table Movie (id uuid pirmary key, title char,release number,tagline text);
点数据(标签+属性键值对) (TheMatrix:Movie {title:’The Matrix’, released:1999, tagline:’Welcome to the Real World’}) 表的一行数据 select * from Movie where id = 0;
相同标签的点的所有数据 MATCH (n:Movie) RETURN n LIMIT 25; 表的所有数据 select * from Movie limit 25;

新增节点

create (n:Person) return n
create  :新增关键字
( )    :一对小括号表示 node (节点)。Entity structure: alias:label {filters}
 n       :变量,用来代表当前节点,后面也可以使用它来引用。
Person :节点n的标签
return  :用来把结果进行返回

新增属性

  1. 已有节点
     match (n:Person) set n.name = "张三" , n.age = 18 return n
     match :查询关键字,在neo4j中用来执行查询操作,类似mysql中的select
     set      :用来设置属性
    
  2. 新节点
     create (n:Person{name:"李四"}) set n.age = 20 return n
     没有节点的情况下,直接在create时,使用set进行赋值,或者是在节点标签后,使用一对大括号,进行赋值
    

    新增关系

    match (n:Person{name:"张三"})
    match (n1:Person{name:"李四"})
    create p = (n)-[r:KNOWS{date:"2023-04-02",city:"北京"}]->(n1) 
    return p
    关系总是从一个起点指向一个终点。因此,需要有两个已知点。
    ()-[]->():关系结构。箭头总是从起点指向终点
    p:表示当前路径。包含起点、终点、关系信息
    r:表示当前关系。仅仅包含关系信息
    

    删除属性

  3. remove
     match (n:Person{name:"里斯"}) remove n.age return n
    
  4. set
     match (n:Person{name:"张三"}) set n.age = null return n
     在Neo4j中,可以通过给属性赋值为 null,来进行属性的删除操作。
    

    删除关系

    match (s:Person{name:"里斯"})-[r]->(t:Person) delete  r
    

删除节点

match (n:Person{name:"里斯"}) delete n

如果两个节点之间有关系的时候。此时,执行节点删除,会提示删除失败。需要先删除关系,然后才能对节点进行删除。针对这种情况,还有另外一种删除方法。可以同时删除节点和关系

match (n:Person) detach delete n

更新属性

match (n:Person{name:"张三"}) set n.name = "小红" return n

查询节点

match (n:Person{name:"张三"} return n

查询属性

match (n:Person{name:"里斯"})  return n.name as name

查询关系

match p = (s:Person)-[r]->(e) return p

可以使用参数代替字面量来写Cypher。参数为字母+数字。已json文件的格式提供,具体如何提交取决于使用的驱动程序。 示例:参数 {  "name": "John" } 示例:使用参数构建查询 

MATCH (n)
WHERE n.name = $name
RETURN n;
或
MATCH (n {name: $name}) RETURN n;

其它

  1. 基于属性过滤做一些操作,比如MATCH (n) where n.id = xx DETACH DETETE n 或者 MATCH (n {id: xx}) DETACH DETETE n都可以,但大佬们说后者性能更好,且有时只有后者生效。

逻辑架构

接口层:这是用户与数据库交互的层面,提供了多样化的访问和操作途径。

  1. Traversal API:专注于图遍历操作,允许用户高效地执行复杂的图路径查找。
  2. Core API:为核心 Java 组件提供接口,支持低级别数据访问,包括读取节点、关系和属性的原始图数据,以及确保数据操作的原子性和一致性。
  3. Cypher:作为 Neo4j 的声明式查询语言,Cypher 简化了图数据查询,类似于 SQL 对于关系型数据库的作用,通过 CQL 接口执行复杂的数据检索和更新。

数据管理层:负责数据访问的高级控制和优化,确保数据处理的高效与安全。

  1. 并发锁管理:通过有效的锁机制处理多线程或多用户的并发访问,防止数据冲突。
  2. 事务管理:确保数据修改的一致性和可靠性,支持事务的提交、回滚及隔离级别管理。
  3. 缓存管理:利用内存缓存技术加速数据访问,减少磁盘 I/O,提升整体性能。
  4. 存储管理:组织和优化数据结构,为上层提供高效的数据存取策略。

存储层:构成数据库的物理基础,负责实际数据的持久化存储。

  1. 这一层包含了图数据的实际存储空间,使用专门设计的数据结构(如 Neo4j 的原生图存储格式)来高效存储节点、关系及其属性,确保数据的长期保存和可恢复性。

存储

存储结构:Neo4j 采用固定大小的记录存储策略,分别在不同的存储文件中保存节点、关系和属性信息,主要文件包括:

neostore.nodestore.db
neostore.relationshipstore.db
neostore.propertystore.db
......

  1. 节点记录结构(neostore.nodestore.db):每个节点记录包含标志位、首个关系ID、首个属性ID、标签信息和一个预留位。节点不直接存储大量属性或关系数据,而是存储指向这些数据(如关系ID和属性ID)的指针,使得节点记录保持轻量。这样的设计允许快速定位节点及其关联关系和属性,得益于固定大小记录的直接寻址能力。
  2. 关系记录结构(neostore.relationshipstore.db):包括起始节点ID、结束节点ID、关系类型指针及关系链的前后指针,支持双向遍历。关系并非双倍存储,而是通过双向链表结构在两个节点之间共享,节省空间并保持高效。
  3. 属性存储(neostore.propertystore.db):属性以固定大小记录存储,每个记录可含多个属性块,并且根据属性值大小采用内联或外联存储策略。大属性值存储于独立的动态字符或数组存储文件中,仍保持高效访问。

关系是双向链表,属性是单向链表,额外的关系会按照链式结构存储在 neostore.relationshipstore.db 中:

遍历算法

图形数据库对于关系问题的解决比较擅长多对多关系的处理。之所以它能够擅长于各种基于图的业务场景的检索处理,就在于其强大的遍历算法。常见遍历算法有15种:

  1. 广度优先搜索(BFS):适合寻找最近的邻居和最短路径,适用于对等网络搜索、社交网络的局部探索。
  2. 深度优先搜索(DFS):适合深入探索分支结构,如在游戏中模拟决策树,寻找所有可能路径。
  3. 单源最短路径:计算一个节点到所有其他节点的最短路径,应用于导航系统、最低成本路由等。
  4. 全源最短路径:计算图中所有节点对之间的最短路径,支持动态路径选择,如备用网络路由规划。
  5. 最小生成树(MST):寻找连接所有节点的最低成本路径,应用于网络设计、基础设施规划等领域。
  6. PageRank:评估节点的重要性,根据链接的数量和质量,广泛应用于搜索引擎排名、社交影响力分析。
  7. Degree Centrality:通过节点的连接数衡量中心性,有助于识别关键节点或信息传播的源头。
  8. Closeness Centrality:衡量节点到达其他所有节点的效率,适合分析响应速度、信息扩散能力。
  9. Betweenness Centrality:测量通过节点的最短路径的数量,评估节点作为信息或资源流通桥梁的重要性,应用于网络瓶颈识别、社交网络影响力分析。
  10. Label Propagation:基于邻域多数的标签作为推断集群的手段,快速的社区检测方法,适用于共识分析、生物网络模块识别等。
  11. Strongly Connected Components:找出完全互相可达的节点集,有助于识别强关联群体或循环依赖。
  12. Union-Find/Connected Components:不考虑边的方向,找到互相可达的节点集,基础的图划分工具。
  13. Louvain Modularity:通过比较它的关系密度与适当定义的随机网络来测量社团分组的质量(即假定的准确性),用于复杂网络分析、组织结构优化。
  14. Local Clustering Coefficient:量化节点周围邻接的紧密程度,反映网络的局部凝聚力。
  15. Triangle-Count and Average Clustering Coefficient:测量网络中的三角形数量和节点聚集趋势,用于理解“小世界”现象、疾病传播模型等。

集群架构

集群架构,Neo4j 的 Causal Cluster 架构涉及两个关键角色:

  1. Core Servers:确保数据一致性与高可用性,通过 Raft 协议管理事务复制。
  2. Read Replicas:扩展读取能力,作为功能完整的只读数据库缓存,异步接收更新以分担查询负载,不参与集群决策。