技术

学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes垂直扩缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

生命周期管理 openkruise学习 可观察性 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubebuilder 及controller-runtime学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

招聘Java

招聘Java开发

标签


go 内存管理

2020年11月22日

前言

内存按块管理,空闲块一般由空闲链表来管理:维护一个类似链表的数据结构。当用户程序申请内存时,空闲链表分配器会依次遍历空闲的内存块,找到足够大的内存,然后申请新的资源并修改链表。因为分配内存时需要遍历链表,所以它的时间复杂度就是 O(n),为了提高效率,将内存分割成多个链表,每个链表中的内存块大小相同(不同链表不同),申请内存时先找到满足条件的链表,再从链表中选择合适的内存块,减少了需要遍历的内存块数量。

内存分配算法 TCMalloc

在 TCMalloc 内存管理内部分为两个部分:线程内存(thread memory)和页堆(page heap)。

  1. 每一个线程都可以获得一个用于无锁分配小对象的缓存,这样可以让并行程序分配小对象(<=32KB)非常高效。PS, java 中叫TLAB:Thread Local Allocation Buffer。Go 中叫mcache(挂在每一个P上)
  2. TCMalloc 管理的堆由一组页组成,一组连续的页面被表示为 span。当分配的对象大于 32KB,将使用页堆(Page Heap)进行内存分配。

整体设计

字节跳动 Go 语言面试高频题 01:内存分配

A visual guide to Go Memory Allocator from scratch (Golang)Go 内存管理的一般思想是使用不同的内存结构为不同大小的对象使用不同的内存缓存级别来分配内存。将一个从操作系统接收的连续地址的块切分到多级缓存来减少锁的使用,同时根据object的大小分配内存减少内存碎片以提高内存分配的效率和在内存释放之后加快 GC 运行的速度。mcache ==> mcentral ==> mheap(向堆申请一个arena) ==> 堆

  1. 大于 32K 的大对象直接从 mheap 分配。
  2. 小于 16B 的使用 mcache 的微型分配器分配
  3. 对象大小在 16B ~ 32K 之间的的,首先通过计算使用的大小规格,然后使用 mcache 中对应大小规格的块分配
  4. 如果对应的大小规格在 mcache 中没有可用的块,则向 mcentral 申请
  5. 如果 mcentral 中没有可用的块,则向 mheap 申请,并根据 BestFit 算法找到最合适的 mspan。如果申请到的 mspan 超出申请大小,将会根据需求进行切分,以返回用户所需的页数。剩余的页构成一个新的 mspan 放回 mheap 的空闲列表。
  6. 如果 mheap 中没有可用 span,则向操作系统申请一系列新的页(最小 1MB)。 Go 会在操作系统分配超大的页(称作 arena)。分配一大批页会减少和操作系统通信的成本。
type p struct {
	id          int32
	mcache      *mcache
	pcache      pageCache 
	...
}

go 内存分配器细节补充

// go:noinline
func smallAllocation() *smallStruct {
    return &smallStruct{}
}
// &smallStruct{} 对应汇编代码
LEAQ    type."".smallStruct(SB), AX
MOVQ    AX, (SP)
PCDATA  $1, $0
CALL    runtime.newobject(SB)

内存空间包含两个重要的区域:栈(stack)和堆(heap),Go 语言的内存分配由标准库自动完成。堆上所有的对象都会通过调用 runtime.newobject 函数分配内存,该函数会调用 runtime.mallocgc 分配指定大小的内存空间。

// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
    ...
    mp := acquirem()
    var c *mcache
	if mp.p != 0 {
		c = mp.p.ptr().mcache       // 获取当前的 G所属的P
	} else {
		c = mcache0
    }
    var span *mspan
    if size <= maxSmallSize {
        if noscan && size < maxTinySize {   // Tiny allocator.
            ...
            span = c.alloc[tinySpanClass]
            v := nextFreeFast(span)
            x = unsafe.Pointer(v)
            ...
        }else{
            ...
            span = c.alloc[spc]
            v := nextFreeFast(span)
            x = unsafe.Pointer(v)
            ...
        }
    }else{
        ...
        span = largeAlloc(size, needzero, noscan)
        x = unsafe.Pointer(span.base())
        ...
    }
}

Go 语言的内存分配器包含内存管理单元runtime.mspan、线程缓存runtime.mcache、中心缓存runtime.mcentral和页堆runtime.mheap几个重要组件

type mspan struct {
    next *mspan             // next span in list, or nil if none
    prev *mspan             // previous span in list, or nil if none
    startAddr uintptr       // address of first byte of span aka s.base()
    npages    uintptr       // number of pages in span
    spanclass   spanClass     // size class and noscan (uint8)
    ...
    allocBits  *gcBits
	gcmarkBits *gcBits        // 实现 span 的颜色标记
}
type mcache struct {
    // Tiny allocator
	tiny             uintptr
	tinyoffset       uintptr
	local_tinyallocs uintptr
}
type mcentral struct {
    lock      mutex     // 互斥锁
    spanclass spanClass // span class ID
    nonempty  mSpanList // non-empty 指还有空闲块的span列表
    empty     mSpanList // 指没有空闲块的span列表
    nmalloc uint64      // 已累计分配的对象个数
}

Golang为每个线程分配了span的缓存,即mcache,避免多线程申请内存时不断的加锁。当 mcache 没有可用空间时,从 mcentral 的 mspans 列表获取一个新的所需大小规格的 mspan。

从mcentral数据结构可见,每个mcentral对象只管理特定的class规格的span。事实上每种class都会对应一个mcentral

Go 使用 mheap 对象管理堆,只有一个全局变量(mheap 也是go gc 工作的地方)。持有虚拟地址空间。mheap 存储了 mcentral 的数组。这个数组包含了各个的 span 规格的 mcentral。由于我们有各个规格的 span 的 mcentral,当一个 mcache 从 mcentral 申请 mspan 时,只需要在独立的 mcentral 级别中使用锁,其它任何 mcache 在同一时间申请不同大小规格的 mspan 互不影响。

当 mcentral 列表为空时,mcentral 从 mheap 获取一系列页用于需要的大小规格的 span。

type mheap struct {
    lock      mutex
    spans []*mspan
    bitmap        uintptr 	//指向bitmap首地址,bitmap是从高地址向低地址增长的
    arena_start uintptr		//指示arena区首地址
    arena_used  uintptr		//指示arena区已使用地址位置
    central [67*2]struct {
        mcentral mcentral
        pad      [sys.CacheLineSize - unsafe.Sizeof(mcentral{})%sys.CacheLineSize]byte
    }
}

go 与常规 gc 语言的区别

Visualizing memory management in Golang

  1. go 没有对内存 分代管理, The main reason for this is the TCMalloc(Thread-Caching Malloc), which is what Go’s own memory allocator was modeled upon. Many programming languages that employ Garbage collection uses a generational memory structure to make collection efficient along with compaction to reduce fragmentation. Go takes a different approach here, as we saw earlier, Go structures memory quite differently. Go employs a thread-local cache to speed up small object allocations and maintains scan/noscan spans to speed up GC. This structure along with the process avoids fragmentation to a great extent making compact unnecessary during GC.
  2. One major difference Go has compared to many garbage collected languages is that many objects are allocated directly on the program stack. The Go compiler uses a process called escape analysis to find objects whose lifetime is known at compile-time and allocates them on the stack rather than in garbage-collected heap memory. During compilation Go does the escape analysis to determine what can go into Stack(static data) and what needs to go into Heap(dynamic data). Go的对象(即struct类型)是可以分配在栈上的。Go会在编译时做静态逃逸分析(Escape Analysis), 如果发现某个对象并没有逃出当前作用域,则会将对象分配在栈上而不是堆上,从而减轻了GC压力。其实JVM也有逃逸分析,但与Go不同的是Java无法在编译时做这项工作,分析是在运行时完成的,这样做一是会占用更多的CPU时间,二是不可能会把所有未逃逸的对象都优化到栈中。