技术

Python ioc 从0到1构建一个db 上下文记忆 agentic chat 图数据库的一些考量 LLM一些探索 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LLM工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
上下文记忆 agentic chat bert rerank微调 大模型推理tips LLM一些探索 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 Multi-Agent探索 LLM工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

向量数据库的一些考量

2024年08月07日

前言(未完成)

数据检索的挑战 —— 从结构化时代到非结构化时代。传统数据库存储的是标量数据,标量原来是物理上的概念,指只有大小而没有方向的物理量,在数据库这里用标量来表示一类数据类型,例如数字型、字符型、日期型、布尔型,针对该类数据类型可以使用精确匹配的方式进行查询,例如传统关系数据库的 SQL,该检索方式称为标量查询。全文检索是指在非结构化的文本数据中基于特定单词或者文本在全文范围内进行检索。常见的搜索引擎就是对全文检索技术的实现,例如 Lucene、Solr、ElasticSearch 等。标量查询和全文检索本质上是关于标量数据或关键字的精确匹配,其查找结果与输入目标之间是完全相同的关系。

全球数据量急剧增长,其中超过80%的数据都会是处理难度较大的非结构化数据,如文档、文本、图形、图像、音频、视频等,非结构化数据在大数据时代的重要地位已成为共识。现代 AI/ML 技术的发展提供了一种从非结构数据中提取语义信息的方式 —— embedding。区别于前面提到的标量类型,embedding 是一种向量类型 —— 由多个数值组成的数组,因此 embedding 又被称为向量或者矢量。

向量模型是指通过特定的嵌入(embedding)技术,将原始的非结构化数据转换成一个数值型的向量,在数学表示上,向量是一个由浮点数或者二值型数据组成的 n 维数组。embedding model 本质上是一种数据压缩技术,通过 AI/ML 技术对原始数据进行编码,使用比原始数据更少的比特位来表示数据。压缩后的数据就是原始数据的“隐空间表示”,压缩过程中,外部特征和非重要特性被去除,最重要的特征被保存下来,随着数据维度的降低,本质上越相似的原始数据,其隐空间表示也越相近。因此,隐空间是一个抽象的多维空间,外部对象被编码为该空间的内部表示,被编码对象在外部世界越相似,在隐空间中就越靠近彼此。基于以上理论基础,我们可以通过 embedding 之间的距离来衡量其相似程度。

技术

向量检索是一种基于距离函数的相似度检索,由于向量间的距离反映了向量的相似度,因此通过距离排序可以查找最相似的若干个向量。向量检索算法有 kNN 和 ANN 两种。

  1. kNN(k-Nearest Neighbors)是一种蛮力检索方式,当给定目标向量时,计算该向量与候选向量集中所有向量的相似度,并返回最相似的 K 条。当向量库中数据量很大时 kNN 会消耗很多计算资源,耗时也不理想。
  2. ANN ( Approximate Nearest Neighbor)是一种更为高效的检索方式,其基本思想是预先计算向量间的距离,并将距离相近的向量存储在一起,从而在检索时可以更高效。预先计算就是构建向量索引的过程,向量索引是一种将向量数据组织为能够高效检索的结构。向量索引大幅提升了检索速度,但返回的是近似结果,因此 ANN 检索会有少量的精度牺牲。常见的 ANN 索引类型有 IVF、HNSW、PQ、IVFPQ

向量的相似性度量基于距离函数,常见的距离函数有欧式距离、余弦距离、点积距离,实际应用中选择何种距离函数取决于具体的应用场景。

  1. 欧式距离衡量两个向量在空间中的直线距离。欧式距离存在尺度敏感性的局限性,通过归一化等技术可以有效降低尺度敏感性对相似度的干扰。欧式距离适用于低维向量,在高维空间下会逐渐失效。
  2. 余弦距离衡量两个向量之间夹角的余弦值。余弦距离存在数值敏感性的局限性,因为其只考虑了向量的方向,而没有考虑向量的长度。余弦距离适用于高维向量或者稀疏向量。
  3. 点积距离通过将两个向量的对应分量相乘后再全部求和而进行相似度衡量,点积距离同时考虑了向量的长度和方向。点积距离存在尺度敏感性和零向量的局限性。

混合检索

传统检索技术善于精确查询,但缺乏语义理解。而向量检索技术能够很好的识别用户意图,但在精确检索方面召回率大概率不如传统检索技术,两种技术都不完美。对于特定的检索场景,两者结合能够提供更准确的检索结果。但混合检索提出了对多个结果集重新排序的难题。全文检索返回的结果集基于TF-IDF、BM25等文档相关性评分排序,向量检索返回的结果集基于距离函数的相似性评分排序,应用程序需要对两者的结果进行重新排序(Re-ranking)。重新排序指将来自多种检索技术的有序结果集进行规范化合并,形成同一标准的单一有序结果集。单一有序结果集能够更好的供下游系统处理和分析。常见的重新排序算法有 RRF、RankNet、LambdaRank、LambdaMART 等。

产品

面向 RAG 应用开发者的实用指南和建议在 RAG 应用生产环境中有效部署向量数据库的关键技巧:

  1. 设计一个有效的 Schema:仔细考虑数据结构及其查询方式,创建一个可优化性能和提供可扩展性的 Schema。
    1. 动态 Schema vs. 固定 Schema。。动态 Schema 提供了灵活性,简化了数据插入和检索流程,无需进行大量的数据对齐或 ETL 过程。这种方法非常适合需要更改数据结构的应用。另一方面,固定 Schema 也十分重要,因为它们有着紧凑的存储格式,在性能效率和节约内存方面表现出色。
    2. 设置主键和 Partition key
    3. 选择 Embedding 向量类型。稠密向量 (Dense Embedding);稀疏向量(Sparse Embedding);二进制向量(Binary Embedding)
  2. 考虑可扩展性:考虑未来的数据规模增长,并充分设计架构以适应不断增长的数据量和用户流量。
  3. 选择最佳索引并优化性能:可以针对向量数据构建高效的索引结构,如倒排索引、树形结构(如 KD 树、Ball Tree)或近似最近邻搜索算法(如FAISS、HNSW),加速检索过程。

milvus

向量数据库 Milvus

使用

当我们把通过模型或者 AI 应用处理好的数据喂给它之后(“一堆特征向量”),它会根据一些固定的套路,例如像传统数据库进行查询优化加速那样,为这些数据建立索引。避免我们进行数据查询的时候,需要笨拙的在海量数据中进行。

本地

faiss 原生使用

# 准备数据
model = SentenceTransformer('uer/sbert-base-chinese-nli')
sentences = ["住在四号普里怀特街的杜斯利先生及夫人非常骄傲地宣称自己是十分正常的人",
             "杜斯利先生是一家叫作格朗宁斯的钻机工厂的老板", "哈利看着她茫然地低下头摸了摸额头上闪电形的伤疤",
             "十九年来哈利的伤疤再也没有疼过"]
sentence_embeddings = model.encode(sentences)
# 建立索引
dimension = sentence_embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(sentence_embeddings)

# 检索
topK = 2
search = model.encode(["哈利波特猛然睡醒"])  # 将要搜索的内容“哈利波特猛然睡醒”编码为向量
D, I = index.search(search, topK)         # D指的是“数据置信度/可信度” I 指的是我们之前数据准备时灌入的文本数据的具体行数。
print(I)
print([x for x in sentences if sentences.index(x) in I[0]])

faiss 与LangChain 集合,主要是与 LangChain 的 document和 Embeddings 结合。 faiss 本身只存储 文本向量化后的向量(index.faiss文件),但是vector db对外使用,一定是文本查文本,所以要记录 文本块与向量关系(index.pkl文件)。此外,需支持新增和删除文件(包含多个文本块),所以也要支持按文件删除 文本块对应的向量。

from langchain.document_loaders import TextLoader
# 录入documents 到faiss
loader = TextLoader("xx.txt")  # 加载文件夹中的所有txt类型的文件
documents = loader.load() # 将数据转成 document 对象,每个文件会作为一个 document
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) 
docs = text_splitter.split_documents(documents)  # 切割加载的 document

embeddings = OpenAIEmbeddings() # 初始化 openai 的 embeddings 对象
db = FAISS.from_documents(docs, embeddings) # 将 document 通过 openai 的 embeddings 对象计算 embedding 向量信息并临时存入 faiss 向量数据库,用于后续匹配查询

query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content)

简单的源码分析

# 根据文档内容构建 langchain.vectorstores.Faiss
vectorstore.base.from_documents(cls: Type[VST],documents: List[Document], embedding: Embeddings,    **kwargs: Any,) -> VST:
    """Return VectorStore initialized from documents and embeddings."""
    texts = [d.page_content for d in documents]
    metadatas = [d.metadata for d in documents]
    return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
        # Embeds documents.
        embeddings = embedding.embed_documents(texts)
        cls.__from(texts,embeddings,embedding, metadatas=metadatas,ids=ids,**kwargs,)
            # Initializes the FAISS database
            faiss = dependable_faiss_import()
            index = faiss.IndexFlatL2(len(embeddings[0]))
            vector = np.array(embeddings, dtype=np.float32)
            index.add(vector)
            # 建立id 与text 的关联
            documents = []
            if ids is None:
                ids = [str(uuid.uuid4()) for _ in texts]
            for i, text in enumerate(texts):
                metadata = metadatas[i] if metadatas else {}
                documents.append(Document(page_content=text, metadata=metadata))
            index_to_id = dict(enumerate(ids))
            # Creates an in memory docstore
            docstore = InMemoryDocstore(dict(zip(index_to_id.values(), documents)))
            return cls(embedding.embed_query,index,docstore,index_to_id,normalize_L2=normalize_L2,**kwargs,) 
save_local:
    faiss = dependable_faiss_import()
    faiss.write_index(self.index, str(path / "{index_name}.faiss".format(index_name=index_name)))
    with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f:
        pickle.dump((self.docstore, self.index_to_docstore_id), f)   

在线

Pinecone 是一个在线的向量数据库。所以,我可以第一步依旧是注册,然后拿到对应的 api key。

from langchain.vectorstores import Pinecone
# 从远程服务加载数据
docsearch = Pinecone.from_existing_index(index_name, embeddings)

# 录入documents 持久化数据到pinecone
# 初始化 pinecone
pinecone.init(api_key="你的api key",environment="你的Environment")
loader = DirectoryLoader('/content/sample_data/data/', glob='**/*.txt')
documents = loader.load() # 将数据转成 document 对象,每个文件会作为一个 document
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
split_docs = text_splitter.split_documents(documents) # 切割加载的 document
docsearch = Pinecone.from_texts([t.page_content for t in split_docs], embeddings, index_name=index_name) # 持久化数据到pinecone

LangChain + GPTCache =兼具低成本与高性能的 LLM 未读。