技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


Linux进程调度

2019年05月01日

简介

调度系统设计精要CFS 的调度过程还是由 schedule 函数完成的,该函数的执行过程可以分成以下几个步骤:

  1. 关闭当前 CPU 的抢占功能;
  2. 如果当前 CPU 的运行队列中不存在任务,调用 idle_balance 从其他 CPU 的运行队列中取一部分执行;
  3. 调用 pick_next_task 选择红黑树中优先级最高的任务;
  4. 调用 context_switch 切换运行的上下文,包括寄存器的状态和堆栈;
  5. 重新开启当前 CPU 的抢占功能;

进程数据结构

一个进程的运行竟然要保存这么多信息,这些信息都可以通过命令行取出来。fork 进程时, 创建一个空的task_struct 结构之后,这些信息也将被一一复制。

long _do_fork(unsigned long clone_flags,
      unsigned long stack_start,
      unsigned long stack_size,
      int __user *parent_tidptr,
      int __user *child_tidptr,
      unsigned long tls){
    struct task_struct *p;
    int trace = 0;
    long nr;
    ......
    // 复制结构
    p = copy_process(clone_flags, stack_start, stack_size,
            child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
    ......
    if (!IS_ERR(p)) {
        struct pid *pid;
        pid = get_task_pid(p, PIDTYPE_PID);
        nr = pid_vnr(pid);
        if (clone_flags & CLONE_PARENT_SETTID)
            put_user(nr, parent_tidptr);
        ......
        // 唤醒新进程
        wake_up_new_task(p);
        ......
        put_pid(pid);
    } 

  创建进程 创建线程
系统调用 fork clone
copy_process逻辑 会将五大结构 files_struct、fs_struct、sighand_struct、signal_struct、mm_struct 都复制一遍
从此父进程和子进程各用各的数据结构
五大结构仅仅是引用计数加一
也即线程共享进程的数据结构
  完全由内核实现 由内核态和用户态合作完成
相当一部分逻辑由glibc库函数pthread_create来做
数据结构   内核态struct task_struct
用户态 struct pthread

线程创建的成本

线程切换的成本

进程调度

进程调度第一定律:所有进程的调度最终是通过正在运行的进程调用__schedule 函数实现

基于虚拟运行时间的调度

struct task_struct{
    ...
    unsigned int policy;    // 调度策略
    ...
    int prio, static_prio, normal_prio;
    unsigned int rt_priority;
    ...
    const struct sched_class *sched_class; // 调度策略的执行逻辑
}

CPU 会提供一个时钟,过一段时间就触发一个时钟中断Tick,定义一个vruntime来记录一个进程的虚拟运行时间。如果一个进程在运行,随着时间的增长,也就是一个个 tick 的到来,进程的 vruntime 将不断增大。没有得到执行的进程 vruntime 不变。为什么是 虚拟运行时间呢?虚拟运行时间 vruntime += 实际运行时间 delta_exec * NICE_0_LOAD/ 权重。就好比可以把你安排进“尖子班”变相走后门,但高考都是按分数(vruntime)统一考核的。PS, vruntime 正是理解 docker –cpu-shares 的钥匙。

/*
 * Update the current task's runtime statistics.
 */
static void update_curr(struct cfs_rq *cfs_rq)
{
  struct sched_entity *curr = cfs_rq->curr;
  u64 now = rq_clock_task(rq_of(cfs_rq));
  u64 delta_exec;
......
  delta_exec = now - curr->exec_start;
......
  curr->exec_start = now;
......
  curr->sum_exec_runtime += delta_exec;
......
  curr->vruntime += calc_delta_fair(delta_exec, curr);
  update_min_vruntime(cfs_rq);
......
}

/*
 * delta /= w
 */
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
{
  if (unlikely(se->load.weight != NICE_0_LOAD))
        /* delta_exec * weight / lw.weight */
    delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  return delta;
}

调度需要一个数据结构来对 vruntime 进行排序,因为任何一个策略做调度的时候,都是要区分谁先运行谁后运行。这个能够排序的数据结构不但需要查询的时候,能够快速找到最小的,更新的时候也需要能够快速的调整排序,毕竟每一个tick vruntime都会增长。能够平衡查询和更新速度的是树,在这里使用的是红黑树。sched_entity 表示红黑树的一个node(数据结构中很少有一个Tree 存在,都是根节点Node* root就表示tree了)。

struct task_struct{
    ...
    struct sched_entity se;     // 对应完全公平算法调度
    struct sched_rt_entity rt;  // 对应实时调度
    struct sched_dl_entity dl;  // 对应deadline 调度
    ...
}

每个 CPU 都有自己的 struct rq 结构,其用于描述在此 CPU 上所运行的所有进程,其包括一个实时进程队列rt_rq 和一个 CFS 运行队列 cfs_rq。在调度时,调度器首先会先去实时进程队列找是否有实时进程需要运行,如果没有才会去 CFS 运行队列找是否有进行需要运行。这样保证了实时任务的优先级永远大于普通任务。

// Pick up the highest-prio task:
static inline struct task_struct *pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf){
    const struct sched_class *class;
    struct task_struct *p;
    ......
    for_each_class(class) {
        p = class->pick_next_task(rq, prev, rf);
        if (p) {
            if (unlikely(p == RETRY_TASK))
                goto again;
            return p;
        }
    }
}

CFS 的队列是一棵红黑树(所以叫“队列”很误导人),树的每一个节点都是一个 sched_entity(说白了每个节点是一个进/线程),每个 sched_entity 都属于一个 task_struct,task_struct 里面有指针指向这个进程属于哪个调度类。

基于进程调度第一定律,上图就是一个很完整的循环,cpu的执行一直是方法调方法(process1.func1 ==> process1.schedule ==> process2.func2 ==> process2.schedule ==> process3.func3),只不过是跨了进程

调度类

如果将task_struct 视为一个对象,在很多场景下 主动调用schedule() 让出cpu,那么如何选取下一个task 就是其应该具备的能力,sched_class 作为其成员就顺理成章了。

struct task_struct{
    const struct sched_class *sched_class; // 调度策略的执行逻辑
}

sched_class结构体类似面向对象中的基类啊,通过函数指针类型的成员指向不同的函数,实现了多态。

主动调度

主动调度,就是进程运行到一半,因为等待 I/O 等操作而主动调用 schedule() 函数让出 CPU。

写入块设备的一个典型场景。写入需要一段时间,这段时间用不上CPU

static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root){
    ......
    do {
        prepare_to_wait(&root->subv_writers->wait, &wait,
                TASK_UNINTERRUPTIBLE);
        writers = percpu_counter_sum(&root->subv_writers->counter);
        if (writers)
            schedule();
        finish_wait(&root->subv_writers->wait, &wait);
    } while (writers);
}

从 Tap 网络设备等待一个读取

static ssize_t tap_do_read(struct tap_queue *q,
            struct iov_iter *to,
            int noblock, struct sk_buff *skb){
    ......
    while (1) {
        if (!noblock)
            prepare_to_wait(sk_sleep(&q->sk), &wait,
                    TASK_INTERRUPTIBLE);
    ......
        /* Nothing to read, let's sleep */
        schedule();
    }
    ......
}

这段跟golang协程的读写过程 是一样一样的,内核机制上层化(内存管理、线程调度放到语言层/框架层来解决)是一个普遍趋势。

抢占式调度

在计算机里面有一个时钟,会过一段时间触发一次时钟中断,时钟中断处理函数会调用 scheduler_tick(),代码如下

void scheduler_tick(void){
    int cpu = smp_processor_id();
    struct rq *rq = cpu_rq(cpu);
    struct task_struct *curr = rq->curr;
    ......
    curr->sched_class->task_tick(rq, curr, 0);
    cpu_load_update_active(rq);
    calc_global_load_tick(rq);
    ......
}

对于普通进程 scheduler_tick ==> fair_sched_class.task_tick_fair ==> entity_tick ==> update_curr 更新当前进程的 vruntime ==> check_preempt_tick 检查是否是时候被抢占了

当发现当前进程应该被抢占,不能直接把它踢下来,而是把它标记为应该被抢占。为什么呢?因为进程调度第一定律呀,一定要等待正在运行的进程调用 __schedule 才行

  1. 用户态的抢占时机
    1. 从系统调用中返回的那个时刻
    2. 从中断中返回的那个时刻
  2. 内核态的抢占时机
    1. 一般发生在 preempt_enable()。在内核态的执行中,有的操作是不能被中断的,所以在进行这些操作之前,总是先调用 preempt_disable() 关闭抢占,当再次打开的时候,就是一次内核态代码被抢占的机会。
    2. 在内核态也会遇到中断的情况,当中断返回的时候,返回的仍然是内核态。这个时候也是一个执行抢占的时机

Schedule

// schedule 方法入口
asmlinkage __visible void __sched schedule(void){
    struct task_struct *tsk = current;
    sched_submit_work(tsk);
    do {
        preempt_disable();
        __schedule(false);
        sched_preempt_enable_no_resched();
    } while (need_resched());
}
// 主要逻辑是在 __schedule 函数中实现的
static void __sched notrace __schedule(bool preempt){
    struct task_struct *prev, *next;
    unsigned long *switch_count;
    struct rq_flags rf;
    struct rq *rq;
    int cpu;
    // 在当前cpu 上取出任务队列rq(其实是红黑树)
    cpu = smp_processor_id();
    rq = cpu_rq(cpu);   
    prev = rq->curr;
    // 获取下一个任务
    next = pick_next_task(rq, prev, &rf);
    clear_tsk_need_resched(prev);
    clear_preempt_need_resched();
    // 当选出的继任者和前任不同,就要进行上下文切换,继任者进程正式进入运行
    if (likely(prev != next)) {
	rq->nr_switches++;
	rq->curr = next;
	++*switch_count;
    ......
	rq = context_switch(rq, prev, next, &rf);
}

上下文切换主要干两件事情,一是切换进程空间,也即虚拟内存;二是切换寄存器和 CPU 上下文。

// context_switch - switch to the new MM and the new thread's register state.
static __always_inline struct rq *context_switch(struct rq *rq, struct task_struct *prev,struct task_struct *next, struct rq_flags *rf){
    struct mm_struct *mm, *oldmm;
    ......
    // 切换虚拟地址空间
    mm = next->mm;
    oldmm = prev->active_mm;
    ......
    switch_mm_irqs_off(oldmm, mm, next);
    ......
    /* Here we just switch the register state and the stack. */
    // 切换寄存器
    switch_to(prev, next, prev);
    barrier();
    return finish_task_switch(prev);
}

Per CPU的struct

linux 内有很多 struct 是Per CPU的,估计是都在内核空间特定的部分。有点线程本地变量的意思

  1. struct rq,描述在此 CPU 上所运行的所有进程
  2. 结构体 tss, 所有寄存器切换 ==> 内存拷贝/拷贝到特定tss_struct

在 x86 体系结构中,提供了一种以硬件的方式进行进程切换的模式,对于每个进程,x86 希望在内存里面维护一个 TSS(Task State Segment,任务状态段)结构。这里面有所有的寄存器。另外,还有一个特殊的寄存器 TR(Task Register,任务寄存器),指向某个进程的 TSS。更改 TR 的值,将会触发硬件保存 CPU 所有寄存器的值到当前进程的 TSS 中,然后从新进程的 TSS 中读出所有寄存器值,加载到 CPU 对应的寄存器中。

但是这样有个缺点。我们做进程切换的时候,没必要每个寄存器都切换,这样每个进程一个 TSS,就需要全量保存,全量切换,动作太大了。于是,Linux 操作系统想了一个办法。还记得在系统初始化的时候,会调用 cpu_init 吗?这里面会给每一个CPU 关联一个 TSS,然后将 TR 指向这个 TSS,然后在操作系统的运行过程中,TR 就不切换了,永远指向这个TSS

在 Linux 中,真的参与进程切换的寄存器很少,主要的就是栈顶寄存器

所谓的进程切换,就是将某个进程的 thread_struct里面的寄存器的值,写入到 CPU 的 TR 指向的 tss_struct,对于 CPU 来讲,这就算是完成了切换。

其它