技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


软件机制

2020年01月20日

简介

为什么需要反码和补码

有界/越界/溢出与取模

在数学的理论中,数字可以有无穷大,也有无穷小。现实中的计算机系统不可能表示无穷大或者无穷小的数字,都有一个上限和下限。加法加越界了就成了 取模运算。

符号位

在实际的硬件系统中,**计算机 CPU 的运算器只实现了加法器88,而没有实现减法器。那么计算机如何做减法呢?我们可以通过加上一个负数来达到这个目的。如何让计算机理解哪些是正数,哪些是负数呢?人们把二进制数分为有符号数(signed)和无符号数(unsigned)。如果是有符号数,那么最高位就是符号位。如果是无符号数,那么最高位就不是符号位,而是二进制数字的一部分。有些编程语言,比如 Java,它所有和数字相关的数据类型都是有符号位的;而有些编程语言,比如 C 语言,它有诸如 unsigned int 这种无符号位的数据类型。

比取模更“狠”——有符号数的溢出

对于 n 位的数字类型,符号位是 1,后面 n-1 位全是 0,我们把这种情形表示为 -2^(n-1)。n 位数字的最大的正值,其符号位为 0,剩下的 n-1 位都1,再增大一个就变为了符号位为 1,剩下的 n-1 位都为0。也就是n位 有符号最大值 加1 就变成了 n位有符号数界限范围内最小的负数——上溢出之后,又从下限开始

是不是有点扑克牌的意思, A 可以作为10JQKA 的最大牌,也可以作为A23456 的最小牌。

  下限 上限
n位无符号数 0 2^n-1
n位有符号数 -2^(n-1) 2^(n-1)-1

取模 可以将(最大值+1) 变成下限值,对于无符号数是0 ,对于有符号数是负数。

减法靠补码

原码就是我们看到的二进制的原始表示,是不是可以直接使用负数的原码来进行减法计算呢?答案是否定的,因为负数的原码并不适用于减法操作(加负数操作)

因为取模的特性,我们知道 i = i + 模数。 那么 i-j = i-j + 模数 也是成立的,进而i-j = i + (模数 -j)模数 -j 即补码 可以对应到计算机的 位取反 和 加 1 操作

本质就是

  1. 加法器不区分 符号位和数据位
  2. 越界 等于 取模,对于有符号位的取模,可以使得 正数 变成负数

我们经常使用朴素贝叶斯算法 过滤垃圾短信,P(A|B)=P(A) * P(B/A) / P(B) 这个公式在数学上平淡无奇,但工程价值在于:实践中右侧数据比 左侧数据更容易获得。 cpu减法器也是类似的道理,减法器 = CPU 位取反 + 加法器

为什么要有堆和栈

为什么需要 GC

  1. 在计算机诞生初期,在程序运行过程中没有栈帧(stack frame)需要去维护,所以内存采取的是静态分配策略,这虽然比动态分配要快,但是其一明显的缺点是程序所需的数据结构大小必须在编译期确定,而且不具备运行时分配的能力,这在现在来看是不可思议的。
  2. 在 1958 年,Algol-58 语言首次提出了块结构(block-structured),块结构语言通过在内存中申请栈帧来实现按需分配的动态策略。在过程被调用时,帧(frame)会被压到栈的最上面,调用结束时弹出。栈分配策略赋予程序员极大的自由度,局部变量在不同的调用过程中具有不同的值,这为递归提供了基础。但是后进先出(Last-In-First-Out, LIFO)的栈限制了栈帧的生命周期不能超过其调用者,而且由于每个栈帧是固定大小,所以一个过程的返回值也必须在编译期确定。所以诞生了新的内存管理策略——堆(heap)管理。
  3. 堆分配运行程序员按任意顺序分配/释放程序所需的数据结构——动态分配的数据结构可以脱离其调用者生命周期的限制,这种便利性带来的问题是垃圾对象的回收管理。

通常可执行程序有一定的格式:代码段+数据段。但程序的一次执行过程是动态的,为了增加动态性,肯定会增加一些自己的数据结构。进程在推进运行的过程中会调用一些数据,可能中间会产生一些数据保留在堆栈段,所以是动态的。

指令中的地址总要有落脚的地方,只有代码区是肯定不行的,静态数据区也不够灵活(待补充)。

为什么需要栈

Memory Management/Stacks and Heaps

  1. The system stack, are used most often to provide frames. A frame is a way to localize information about subroutines(可以理解为函数).
  2. In general, a subroutine must have in its frame the return address (where to jump back to when the subroutine completes), the function’s input parameters. When a subroutine is called, all this information is pushed onto the stack in a specific order. When the function returns, all these values on the stack are popped back off, reclaimed to the system for later use with a different function call. In addition, subroutines can also use the stack as storage for local variables.

​栈 (stack) 是现代计算机程序里最为重要的概念之一,几乎每一个程序都使用了栈,没有栈就没有函数,没有局部变量,也就没有我们如今能够看见的所有的计算机语言。在数据结构中,栈被定义为一个特殊的容器,先进后出。在计算机系统中,栈则是一个具有以上属性的动态内存区域。栈在程序运行中具有举足轻重的地位。最重要的,栈保存了一个函数调用所需要的维护信息,这常常被称为堆栈帧(Stack Frame)。

根据上文可以推断:为什么需要栈?为了支持函数。OS设计体现了对进程、线程的支持,直接提供系统调用创建进程、线程,但就进程/线程内部来说,os 认为代码段是一个指令序列,最多jump几下,指令操作的数据都是事先分配好的(数据段主要容纳全局变量,且是静态分配的),没有直接体现对函数的支持(只是硬件层面上提供了栈指针寄存器,编译器实现函数参数、返回值压栈、出栈)。没有函数,代码会重复,有了函数,才有局部变量一说,有了局部变量才有了数据的动态申请与分配一说。函数及其局部变量 是最早的 代码+数据的封装。

加入线程的因素:每个线程有独立的栈(栈一般作为线程独占的内存空间,使用时也就无需担心并发安全),而栈既保留了变量的值,也保留了函数的调用关系、参数和返回值。

为什么需要堆?

光有栈,对于面向过程的程序设计还远远不够,因为栈上的数据在函数返回的时候就会被释放掉,所以无法将数据传递至函数外部。而全局变量没有办法动态地产生,只能在编译的时候定义,有很多情况下缺乏表现力,在这种情况下,堆(Heap)是一种唯一的选择。The heap is an area of dynamically-allocated memory that is managed automatically by the operating system or the memory manager library. Memory on the heap is allocated, deallocated, and resized regularly during program execution, and this can lead to a problem called fragmentation. 堆适合管理生存期较长的一些数据,这些数据在退出作用域以后也不会消失。

调度系统设计精要

调度系统设计精要在计算机科学中,调度就是一种将任务(Work)分配给资源的方法。任务可能是虚拟的计算任务,例如线程、进程或者数据流,这些任务会被调度到硬件资源上执行,例如:处理器 CPU 等设备。调度模块的核心作用就是对有限的资源进行分配以实现最大化资源的利用率或者降低系统的尾延迟,调度系统面对的就是资源的需求和供给不平衡的问题

  任务 资源 描述
操作系统 线程 cpu  
Go 协程 cpu线程  
Kubernetes pod node 为待运行的工作负载 Pod 绑定运行的节点 Node
CDN的资源调度      
订单调度      
离线任务调度