技术

agentic chat 图数据库的一些考量 LLM一些探索 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LLM工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
agentic chat bert rerank微调 大模型推理tips LLM一些探索 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 Multi-Agent探索 LLM工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

学习mesh

2021年09月11日

前言

服务网格在百度核心业务大规模落地实践 具体细节倒还好,比较有价值的就是提出了落地图景和理想化状态。

云原生时代的DevOps平台设计之道大胆设想一下,开发人员只需要在两个服务组件之间拖动一条表征微服务调用关系的线,就可以生成对应的微服务配置。这样的操作体验完全可以使注册中心、控制平面这种微服务领域中复杂的概念对开发人员屏蔽。本质上讲,维护注册中心或者控制平面也是运维人员需要关心的工作。PS:配置文件 + 业务client sdk ==> 无配置化 + 业务client sdk ==> 无配置 + 通用sdk

缘起

分布式微服务时代的 TCP —— service mesh随着业务的不断发展,微服务的数量越来越多,微服务间的通信网络也变得十分复杂,在这个角度看,服务间通信已经不在是端到端的调用了,而是”多个节点访问多个节点”的关系了。在处理分布式微服务架构中”多个节点”的互相通信上,需要解决很多通用的问题,service mesh 要做微服务时代的 TCP,也就是在解决上述问题的基础上,还要做到通用化、标准化,解耦合业务进程与 mesh。

Service Mesh 的未来在于网络 mesh 正在和ebpf 结合起来,尽量在内核实现所有功能。

问题

蚂蚁集团 Service Mesh 进展回顾与展望 提供了演进脉络。

考虑的问题

  1. 技术选型
  2. 性能问题和资源问题
    1. 网络接入:iptables 还是直通
    2. 性能优化:一跳还是两跳,面向失败设计,Service Mesh 可以 fallback 为直连模式。
    3. Sidecar自身会消耗资源,增加业务的成本。
    4. 随着Sidecar规模的增长,开源的控制平面计算开销变大,导致Mesh配置下发时间变长,甚至无法工作。
  3. 改造成本
    1. 各种各样的微服务框架网格化改造和适配
    2. 各种各样的通信协议支持

享受网格场景场景化能力

  1. 服务治理策略
    1. 延迟感知负载均衡,基于Server 响应时间进行流量调度,尽量多调度给延迟低的Server
    2. 错误码调权,基于自定义错误码进行Server 调权,加速异常Server 节点的驱逐
    3. 备份重试,通过定时触发备份重试请求优化长度,提高可用性
    4. 动态备份重试,按分位值动态设置备份重试请求触发时间,支持备份重试请求熔断,防止重试风暴。
    5. 流量丢弃/全局流控,在线实施配置流量丢弃比例,摘除下游,提供统一流控预案
    6. 超时透传,实时透传上游超时给下游,帮助业务实现动态TTL机制
  2. trace 平台和监控平台
  3. 自动止损 ==> 稳定性预案平台, 根据监控平台的指标异常实时调参,执行流量降级、切机房、切流等 ==> 反馈到监控平台 ==> 稳定性预案平台继续调参, 实现闭环
  4. 混沌工程 深度解读:分布式系统韧性架构压舱石OpenChaos
  5. 系统容量评估(压测)

通过接入Mesh服务网格得到的一些启示:

  1. 服务网格不是微服务治理的银弹
  2. 完全无入侵的,支持所有协议,所有框架和所有治理策略的 Mesh 方案是不存在的
  3. 大规模工业化落地的平滑、稳定可控接入方案,涉及到大量对已有服务治理组件的兼容升级和改造
  4. 服务网格确实实现了业务逻辑和服务治理架构的解耦,解锁了很多新能力
  5. 服务网格结合可观测、故障止损、混沌工程,容量管理等场景化,才能发挥出最大价值

规范

SMI 和 UDPA 的关系与我在容器运行时中介绍到的 CRI 和 OCI 规范之间的关系很相似。

  1. SMI 规范提供了外部环境(实际上就是 Kubernetes)与控制平面交互的标准,使得 Kubernetes 及在其之上的应用,能够无缝地切换各种服务网格产品;SMI 与 Kubernetes 是彻底绑定的,规范的落地执行完全依靠在 Kubernetes 中部署 SMI 定义的 CRD 来实现。包括四方面的 API
    1. 流量规范(Traffic Specs),目标是定义流量的表示方式,比如 TCP 流量、HTTP/1 流量、HTTP/2 流量、gRPC 流量、WebSocket 流量等应该如何在配置中抽象和使用。
    2. 流量拆分(Traffic Split),目标是定义不同版本服务之间的流量比例,提供流量治理的能力,比如限流、降级、容错,等等,以满足灰度发布、A/B 测试等场景。
    3. 流量度量(Traffic Metrics),目标是为资源提供通用集成点,度量工具可以通过访问这些集成点来抓取指标。这部分完全遵循了 Kubernetes 的Metrics API进行扩充。
    4. 流量访问控制(Traffic Access Control),目标是根据客户端的身份配置,对特定的流量访问特定的服务提供简单的访问控制。
  2. UDPA 规范则提供了控制平面与数据平面交互的标准,使得服务网格产品能够灵活地搭配不同的边车代理,针对不同场景的需求,发挥各款边车代理的功能或者性能优势。

技术决策案例

欢乐游戏 Istio 云原生服务网格三年实践思考从笔者个人的观察来讲,istio 网格最具吸引力的,实际上就两点:

  1. 开放技术栈的想象空间,随着 istio、envoy、gRPC 整个生态越来越丰富,未来可能会有更多能力提供,开箱即用,业务团队不必投入开发;
  2. 多语言适配,不用为每种语言开发治理 sdk,例如 C++ 编写的 envoy 可以给所有用 gRPC 的 service 使用。 至于熔断、限流、均衡、重试、镜像、注入,以及 tracing 监控之类的能力,严格来讲不能算到网格头上,用 sdk 也是一样可以实现的。在团队语言统一的时候,只用维护一种语言版本的 sdk,此时采用治理 sdk 方案也是可行的,也就是所谓的微服务框架方案。采用 sdk 方式下的版本维护问题,以及后期进一步演进网格的问题,这些都不难解决。对于我们自己来讲,因为恰好有引进 golang 以及 gRPC,所以现在再看,选择 istio 作为网格方案也算合适。

接入网格,要考虑天时地利人和。即,需要满足一些基本条件:

  1. 需要项目阶段允许,如果团队本身一直在做快版本内容迭代,业务需求都忙不过来,恐怕也很难有人力保障。
  2. 要有基础设施环境支持(我们使用了腾讯云的 tke mesh 服务),这样不至于所有东西都从零开始。

此外,对于这类大的技术优化,还有必要先统一思想:

  1. 自上而下,获得各级管理干系人的认可,这样才好做较大人力的投入。
  2. 自下而上,发动同学们深度介入探讨,使得整体的方向、方案得到大家的认可,这样大家才有干劲。

阿里巴巴在 Envoy Gateway 的演进历程浅析

谈谈我对服务网格的理解 有几个配图很有感觉

去哪儿网 Service Mesh 落地实践:100%容器化打底,业务友好是接入关键

  1. 中小企业首先考虑的更多是业务。业务越来越多、越来越复杂后,才可能会出现多语言、多框架的问题。只有确实出现这个问题时,才应该开始考虑是否引入 Service Mesh。此外还需要考虑自身的基础设施、团队技术储备等是否支持落地。Service Mesh 是利用低复杂的技术去解决高复杂度的问题,如果本身复杂度不高,引入 Service Mesh 这样的技术只会增加复杂度,得不偿失。
  2. 还有一个值得关注的方面就是性价比。引入 Service Mesh 的新增成本包括 sidecar 所占有的资源,比如每个 sidecar 占用的 CPU、内存、磁盘以及其他如 trace 存储、日志存储等存储资源。另外,像请求耗时增加、系统开发维护等会产生相应成本,因此去哪儿网目前对于各类日志是按需开启,只打印耗时高的 trace 信息。