技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


源码分析体会

2019年01月24日

前言

为什么要读源码

如果你看到一个新东西,却没有理清它的逻辑,直到打通你已熟悉的东西(学名叫已有的知识体系),那肯定是没有真正理解它。

直接目标——学习框架

  1. 浅层知识细节太多,极其容易遗忘。如果一想起某个框架,你只记得一些琐碎的使用细节,那么连“如何使用这个框架”这个技能本身,也终究是会失去的。
  2. 如果框架对你都是黑盒,那么你就不敢用
  3. 熟悉源码,是对一些“微言大义”的佐证。每个框架 在其官网都有一句/段的概括,若是不熟悉整个上下文,这段精炼的概括是很难读出感觉的。此外,直接附着在源码上的注释,通常也很精炼,文档上很难看到。
  4. 世界很奇怪,打败微信的不会是另一个微信;光靠写代码,也不会提高写代码的水平。只有输出没有输入是不行的,要不断的学习优秀源码的实现。
  5. 涉猎广泛,涉猎广泛就可以理论联系实际。比如我们说事务有四大特性,从一个程序员的角度说,概念背的再溜不如show me your code。比如事务的原子性,在mysql中体现为redo和undo log,在spring-tx 体现为try catch中的rollback。在compensable-transaction 中除了commit、rollback之外,还有系统重启之后的重试,此时transaction就是redo/undo log。

深层知识/感觉才是有价值的

只有深层知识才可以通用,通用很重要。学习一个源码可以加快理解另一个源码的速度

  1. 通用是必要的,对于java来说,如果只会spring + mybatis等入门框架,那么留给你的就是一些简单的后台系统(业务级的系统),你永远无法去做部门级、公司级、apache级的项目。
  2. 通用是有很大好处的,你学习一个新的东西会越来越快。如果你曾经精研过netty的io 原理,那么当你碰到kafka 的io 部分时,可以一笔跳过。

东西都是共通的,认知的几点规律 欧几里得的《几何原本》,从五条公设和五个公理出发,经过层层演绎推理,竟能推出整整一本书的内容。 当你把分层、异步、反应式这些基础的东西 理解透彻后,分析一个框架的源码就是一两天的事情。虽然短时间内增大了学习负担,但一旦理解透彻,疑惑不在脑中徘徊,长期来说省去了纠结、疑虑和google的时间。源码的学习 可以反哺源码学习的能力,从程序员的职业生涯来讲,成长来自解决足够复杂的事情,这需要你有足够高的学习和工作效率,决不能将工作产出绑死在工作时间上,学习源码是提高专业工作效率的重要部分。

如果不深挖一下,一个java开发很少有机会认识到学习linux 有多么必要。

常识比信息重要

信息越多越心累,常识越多越通透。可以为任何学习行为 找到一个通用目标:提炼常识。进而通过常识,碰到一个新技术时可以place it in context

分析方法

前期准备

  1. demo例子
  2. 如果条件允许的话,最好能熟练使用框架。使用的过程中最好积累一些疑问,以作为分析源码时的切入点,在分析过程中想办法解决这几个问题。
  3. 阅读官方文档,搜索一些博客,对其主要设计、理念心中有数
  4. 了解下框架涉及的一些底层技术,比如NIO等
  5. 程序=数据结构+算法,识别其数据部分(也就是输入输出是什么),猜测其核心逻辑(算法)

分析过程

  1. 多画图,相对文字而言,图的信息密度更高
  2. 类图,所有用面向对象思想实现的框架都可以画类图,类图反映了代码的组织。一个框架如果代码量很大的话,一定要解决一个事情,即代码和数据是如何分散在各个小单元的,类图通常反应了作者对框架所解决问题的逻辑抽象。画类图有几个注意点

    1. 抓大放小
    2. 因为Java 各种设计模式,表象跟意图经常错位。比如A 有一个B成员,有时不能画为 A和B 是聚合关系
    3. 同一个意图的几个类,建议标上一致的背景色,突出功能域
  3. 序列图。包括初始化流程,和主干流程。 对源码分析进行整理浓缩,跟踪主要路径,直到打通到你已经熟悉的知识。以java为例,一个序列图的尾部,通常是类似java/io 等已熟知的类。
  4. 重要的不是画这些图,而是以这些图为抓手,串一个下整个过程,分析的过程才是最重要的,切忌把画图手段当成目的。找到感觉,积累成功的心理体验。

类图和序列图系统分析 一个框架示例 Jedis源码分析

最重要的——后期跟进

不管多么高的技巧,初次学习一个新东西,对事情的认识都是有限/片面的。一方面需要一段时间连续投入其中,从细节、琐碎之中憋出一些“体悟”出来。另一个是,经常反刍,碰到类似的东西时尽量举一反三,再反过来加深理解。

一些技巧

  1. 先弄清楚一个组件的input/output(一些项目会有些自定义协议) ,再看下核心数据结构 即可。不同类型的项目, 核心是不同的

    1. 你看一个web 项目 直接看 数据库表 就算是抓住了核心
    2. 你看一个中间件 它的核心待 理解
  2. 只分析主要功能的主要流程,忽略异常处理、特殊逻辑处理等。没错,80%的代码都没干“正经”事。有兴趣可以找源码0.0.1 版本的代码看下。
  3. 能有一段较长的、可以集中注意力的时间
  4. 世界很复杂,但基础的逻辑真的很有限。源码很复杂,但基础的原理真的很有限。
  5. 在你学习一定数量的框架之前,你收到的全是负反馈(因为有那么多不会的),但一旦越过瓶颈点,尤其是你学过一些很难的框架之后,再去看一些简单框架的源码,你就会有一种“藐视敌人的英雄气概”。无论做什么事情,成功过一次很重要
  6. 不断去做,以至于成为本能。源码分析的多了,会形成一种直觉,从繁杂的表象下提取关键、有效信息的直觉
  7. 每个人的背景知识是不一样的,写一篇文档,以自己的视角重新串一下整个框架。
  8. 任何一个系统的设计都有功能和性能(泛化一下就是功能性和非功能性) 两个部分,识别系统模块属于哪个部分,有助于简化对系统的认识。通常,一个系统的最早版本只专注于功能,后续除非大的变动,后来的演化大部分都是为了性能上的追求
  9. 作者的代码不是一下子写出来的,你也不要试图一下子勘破所有门道。用分层、主次要矛盾的方法论去认知。
  10. 不要硬看代码,通过打印日志、打断点的方式来 查看代码的执行链条

你要有一个武器库,而不是三板斧。

即便看了源码,也很难说将系统吃透,但“消除陌生感” 也是很有意义的。