技术

mosn有的没的 负载均衡泛谈 《Mysql实战45讲》笔记 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 容器日志采集 Kubernetes 控制器模型 Kubernetes监控 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 kubernetes crd 及kubebuilder学习 pv与pvc实现 csi学习 client-go学习 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


Kubernetes源码分析——apiserver

2019年01月05日

简介

apiserver 核心职责

  1. 提供Kubernetes API
  2. 代理集群组件,比如Kubernetes dashboard、流式日志、kubectl exec 会话

声明式API

  1. 命令式命令行操作,比如直接 kubectl run
  2. 命令式配置文件操作,比如先kubectl create -f xx.yamlkubectl replace -f xx.yaml
  3. 声明式API 操作,比如kubectl apply -f xx.yaml命令式api 描述和执行 是一体的,声明式api 则需要额外的 执行器(下文叫Controller) sync desired state 和 real state。

声明式API 有以下优势

  1. 实现层的逻辑不同。kube-apiserver 在响应命令式请求(比如,kubectl replace)的时候,一次只能处理一个写请求,否则会有产生冲突的可能。而对于声明式请求(比如,kubectl apply),一次能处理多个写操作,并且具备 Merge 能力。
  2. 如果xx.yaml 不变,可以任意多次、同一时间并发 执行apply 操作。
  3. “声明式 API”允许有多个 API 写端,以 PATCH 的方式对 API 对象进行修改,而无需关心本地原始 YAML文件的内容。例如lstio 会自动向每一个pod 写入 envoy 容器配置(用户无感知),如果xx.yaml 是一个 xx.sh 则该效果很难实现。

火得一塌糊涂的kubernetes有哪些值得初学者学习的?在分布式系统中,任何组件都可能随时出现故障。当组件恢复时,需要弄清楚要做什么,使用命令式 API 时,处理起来就很棘手。但是使用声明式 API ,组件只需查看 API 服务器的当前状态,即可确定它需要执行的操作。《阿里巴巴云原生实践15讲》 称之为:面向终态自动化。

k8s api 术语

  1. Kind, 表示实体的类型。直接对应一个Golang的类型,会持久化存储在etcd 中
  2. API group, 在逻辑上相关的一组 Kind 集合。如 Job 和 ScheduledJob 都在 batch API group 里。
  3. Version, 标示 API group 的版本更新, API group 会有多个版本 (version)。v1alpha1: 初次引入 ==> v1beta1: 升级改进 ==> v1: 开发完成毕业
  4. Resource, 通常是小写的复数词(例如,pods),用于标识一组 HTTP 端点(路径),来对外暴露 CURD 操作。

每个 Kind 和 Resource 都存在于一个APIGroupVersion 下,分别通过 GroupVersionKind 和 GroupVersionResource 标识。关联GVK 到GVR (资源存储与http path)的映射过程称作 REST mapping。PS: 这在代码命名上有非常直接的体现

分层架构

apiserver分析-路由注册管理

适合从下到上看。不考虑鉴权等,先解决一个Kind 的crudw,多个Kind (比如/api/v1/pods, /api/v1/services)汇聚成一个APIGroupVersion,多个APIGroupVersion(比如/api/v1, /apis/batch/v1, /apis/extensions/v1) 汇聚为 一个GenericAPIServer 即api server。

go-restful框架

API Server使用了go-restful框架,按照go-restful的原理,包含以下的组件

  1. Container: 一个Container包含多个WebService
  2. WebService: 一个WebService包含多条route
  3. Route: 一条route包含一个method(GET、POST、DELETE,WATCHLIST等),一条具体的path以及一个响应的handler
ws := new(restful.WebService)
ws.Path("/users").
  Consumes(restful.MIME_XML, restful.MIME_JSON).
  Produces(restful.MIME_JSON, restful.MIME_XML)
ws.Route(ws.GET("/{user-id}").To(u.findUser).
  Doc("get a user").
  Param(ws.PathParameter("user-id", "identifier of the user").DataType("string")).
  Writes(User{}))    
...
func (u UserResource) findUser(request *restful.Request, response *restful.Response) {
  id := request.PathParameter("user-id")
  ...
}

存储层

位于 k8s.io/apiserver/pkg/storage

// k8s.io/apiserver/pkg/storage/interface.go
type Interface interface {
    Versioner() Versioner
    Create(ctx context.Context, key string, obj, out runtime.Object, ttl uint64) error
    Delete(ctx context.Context, key string, out runtime.Object, preconditions *Preconditions) error
    Watch(ctx context.Context, key string, resourceVersion string, p SelectionPredicate) (watch.Interface, error)
    Get(ctx context.Context, key string, resourceVersion string, objPtr runtime.Object, ignoreNotFound bool) error
    List(ctx context.Context, key string, resourceVersion string, p SelectionPredicate, listObj runtime.Object) error
    ...
}

封装了对etcd 的操作,还提供了一个cache 以减少对etcd 的访问压力。在Storage这一层,并不能感知到k8s资源对象之类的内容,纯粹的存储逻辑。

registry 层

实现各种资源对象的存储逻辑

  1. kubernetes/pkg/registry负责k8s内置的资源对象存储逻辑实现
  2. k8s.io/apiextensions-apiserver/pkg/registry负责crd和cr资源对象存储逻辑实现
k8s.io/apiserver/pkg/registry
    /generic
        /regisry
            /store.go       // 对storage 层封装,定义 Store struct
k8s.io/kubernetes/pkg/registry/core
    /pod
        /storage
            /storage.go     // 定义了 PodStorage struct,使用了Store struct
    /service
    /node
    /rest
        /storage_core.go

registry这一层比较分散,k8s在不同的目录下按照k8s的api组的管理方式完成各自资源对象存储逻辑的编写,主要就是定义各自的结构体,然后和Store结构体进行一次组合。

type PodStorage struct {
	Pod                 *REST
	Log                 *podrest.LogREST
	Exec                *podrest.ExecREST
	...
}
type REST struct {
	*genericregistry.Store
	proxyTransport http.RoundTripper
}
func (c LegacyRESTStorageProvider) NewLegacyRESTStorage(restOptionsGetter generic.RESTOptionsGetter) (LegacyRESTStorage, genericapiserver.APIGroupInfo, error) {
    ...
    // 关联路径 与各资源对象的关系
    restStorageMap := map[string]rest.Storage{
		"pods":             podStorage.Pod,
		"pods/attach":      podStorage.Attach,
		"pods/status":      podStorage.Status,
		"pods/log":         podStorage.Log,
		"pods/exec":        podStorage.Exec,
		"pods/portforward": podStorage.PortForward,
		"pods/proxy":       podStorage.Proxy,
		"pods/binding":     podStorage.Binding,
		"bindings":         podStorage.LegacyBinding,
    }
}

endpoint 层

位于 k8s.io/apiserver/pkg/endpoints 包下。根据Registry层返回的路径与存储逻辑的关联关系,完成服务器上路由的注册。

// k8s.io/apiserver/pkg/endpoints/installer.go
type APIInstaller struct {
	group             *APIGroupVersion
	prefix            string // Path prefix where API resources are to be registered.
	minRequestTimeout time.Duration
}
// 一个Resource 下的 所有处理函数 都注册到 restful.WebService 中了
func (a *APIInstaller) registerResourceHandlers(path string, storage rest.Storage, ws *restful.WebService) (*metav1.APIResource, error) {
    // 遍历所有操作,完成路由注册
    for _, action := range actions {
        ...
        switch action.Verb {
            case "GET": // Get a resource.
                ...
                route := ws.GET(action.Path).To(handler).
                    Doc(doc).
                    Param(ws.QueryParameter("pretty", "If 'true', then the output is pretty printed.")).
                    Returns(http.StatusOK, "OK", producedObject).
                    Writes(producedObject)
                ...
                routes = append(routes, route)
            case ...
        }
        ...
        for _, route := range routes {
			...
			ws.Route(route)
		}
    }
}
func (a *APIInstaller) Install() ([]metav1.APIResource, *restful.WebService, []error) {
	ws := a.newWebService()
	...
	for _, path := range paths {
		apiResource, err := a.registerResourceHandlers(path, a.group.Storage[path], ws)
		apiResources = append(apiResources, *apiResource)
	}
	return apiResources, ws, errors
}
type APIGroupVersion struct {
	Storage map[string]rest.Storage // 对应上文的restStorageMap 
    Root string
}
// 一个APIGroupVersion 下的所有Resource处理函数 都注册到 restful.Container 中了
func (g *APIGroupVersion) InstallREST(container *restful.Container) error {
	prefix := path.Join(g.Root, g.GroupVersion.Group, g.GroupVersion.Version)
	installer := &APIInstaller{
		group:             g,
		prefix:            prefix,
		minRequestTimeout: g.MinRequestTimeout,
	}
	apiResources, ws, registrationErrors := installer.Install()
	...
	container.Add(ws)
	return utilerrors.NewAggregate(registrationErrors)
}

同时在Endpoints还应该负责路径级别的操作:比如:到指定类型的认证授权,路径的调用统计,路径上的操作审计等。这部分内容通常在endpoints模块下的fileters内实现,这就是一层在http.Handler外做了一层装饰器,便于对请求进行拦截处理。

server 层

Server模块对外提供服务器能力。主要包括调用调用Endpoints中APIInstaller完成路由注册,同时为apiserver的扩展做好服务器层面的支撑(主要是APIService这种形式扩展)

// 注册所有 apiGroupVersion 的处理函数 到restful.Container 中
func (s *GenericAPIServer) installAPIResources(apiPrefix string, apiGroupInfo *APIGroupInfo, openAPIModels openapiproto.Models) error {
	for _, groupVersion := range apiGroupInfo.PrioritizedVersions {
		apiGroupVersion := s.getAPIGroupVersion(apiGroupInfo, groupVersion, apiPrefix)
		if err := apiGroupVersion.InstallREST(s.Handler.GoRestfulContainer); err != nil {
			...
		}
	}
	return nil
}

除了路由注册到服务器的核心内容外,server模块还提供了如下内容:

  1. 路由层级的日志记录(在httplog模块)
  2. 健康检查的路由(healthz模块)
  3. 服务器级别的过滤器(filters模块),如,cors,请求数,压缩,超时等过滤器,
  4. server级别的路由(routes模块),如监控,swagger,openapi,监控等。

拦截api请求

  1. Admission Controller
  2. Initializers
  3. webhooks, If you’re not planning to modify the object and intercepting just to read the object, webhooks might be a faster and leaner alternative to get notified about the objects. Make sure to check out this example of a webhook-based admission controller.

Admission Controller

准入控制器是kubernetes 的API Server上的一个链式Filter,它根据一定的规则决定是否允许当前的请求生效,并且有可能会改写资源声明。比如

  1. enforcing all container images to come from a particular registry, and prevent other images from being deployed in pods.
  2. applying pre-create checks
  3. setting up default values for missing fields.

The problem with admission controllers are:

  1. They’re compiled into Kubernetes: If what you’re looking for is missing, you need to fork Kubernetes, write the admission plugin and keep maintaining a fork yourself.
  2. You need to enable each admission plugin by passing its name to –admission-control flag of kube-apiserver. In many cases, this means redeploying a cluster.
  3. Some managed cluster providers may not let you customize API server flags, therefore you may not be able to enable all the admission controllers available in the source code.

Initializers

How Kubernetes Initializers work

Initializers are not part of Kubernetes source tree, or compiled into it; you need to write a controller yourself.

When you intercept Kubernetes objects before they are created, the possibilities are endless: You can mutate the objects in any way you like, or prevent the objects from being created.Here are some ideas for initializers, each enforce a particular policy in your cluster:

  1. Inject a proxy sidecar container to the pod if it has port 80, or has a particular annotation.
  2. Inject a volume with test certificates to all pods in the test namespace automatically.
  3. If a Secret is shorter than 20 characters (probably a password), prevent its creation.

Anatomy of Initialization

  1. Configure which resource types need initialization
  2. API server will assign initializers to the new resources
  3. You will write a controller to watch for the resources
  4. Wait for your turn to modify the resource
  5. Finish modifying, yield to the next initializer
  6. No more initializers, resource ready to be realized. When Kubernetes API server sees that the object has no more pending initializers, it considers the object “initialized”. Now the Kubernetes scheduler and other controllers can see the fully initialized object and make use of them.

从中可以看到,为啥Admission Controller 干活要改源码,Initializers 不用呢? 因为干活要改源码,Initializer 只是给待处理资源加上了标记metadata.initalizers.pending=InitializerName,需要相应的Controller 打辅助。

示例

etcd: Kubernetes’ brain

Every component in Kubernetes (the API server, the scheduler, the kubelet, the controller manager, whatever) is stateless. All of the state is stored in a key-value store called etcd, and communication between components often happens via etcd.

For example! Let’s say you want to run a container on Machine X. You do not ask the kubelet on that Machine X to run a container. That is not the Kubernetes way! Instead, this happens:

  1. you write into etcd, “This pod should run on Machine X”. (technically you never write to etcd directly, you do that through the API server, but we’ll get there later)
  2. the kublet on Machine X looks at etcd and thinks, “omg!! it says that pod should be running and I’m not running it! I will start right now!!”

When I understood that basically everything in Kubernetes works by watching etcd for stuff it has to do, doing it, and then writing the new state back into etcd, Kubernetes made a lot more sense to me.

Reasons Kubernetes is coolBecause all the components don’t keep any state in memory(stateless), you can just restart them at any time and that can help mitigate a variety of bugs.The only stateful thing you have to operate is etcd

k8s 在 etcd中的存在

/registry/minions
/registry/minions/192.168.56.102    # 列出该节点的信息包括其cpu和memory能力
/registry/minions/192.168.56.103
/registry/controllers
/registry/controllers/default
/registry/controllers/default/apache2-controller	# 跟创建该controller时信息大致相同分为desireState和currentState
/registry/controllers/default/heapster-controller
/registry/pods
/registry/pods/default
/registry/pods/default/128e1719-c726-11e4-91cd-08002782f91d   	# 跟创建该pod时信息大致相同分为desireState和currentState
/registry/pods/default/128e7391-c726-11e4-91cd-08002782f91d
/registry/pods/default/f111c8f7-c726-11e4-91cd-08002782f91d
/registry/nodes
/registry/nodes/192.168.56.102
/registry/nodes/192.168.56.102/boundpods	# 列出在该主机上运行pod的信息镜像名可以使用的环境变量之类这个可能随着pod的迁移而改变
/registry/nodes/192.168.56.103
/registry/nodes/192.168.56.103/boundpods
/registry/events
/registry/events/default
/registry/events/default/704d54bf-c707-11e4-91cd-08002782f91d.13ca18d9af8857a8		# 记录操作比如将某个pod部署到了某个node上
/registry/events/default/f1ff6226-c6db-11e4-91cd-08002782f91d.13ca07dc57711845
/registry/services
/registry/services/specs
/registry/services/specs/default
/registry/services/specs/default/monitoring-grafana		#  基本跟创建信息大致一致但包含serviceip
/registry/services/specs/default/kubernetes
/registry/services/specs/default/kubernetes-ro
/registry/services/specs/default/monitoring-influxdb
/registry/services/endpoints
/registry/services/endpoints/default
/registry/services/endpoints/default/monitoring-grafana	  	# 终端traffic在这里被处理),和某一个serviceId相同包含了service对应的几个pod的ip这个可能经常变
/registry/services/endpoints/default/kubernetes
/registry/services/endpoints/default/kubernetes-ro
/registry/services/endpoints/default/monitoring-influxdb

create pod