技术

Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论及实践 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 LLM部分技术源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

大模型推理服务框架 模型服务化(未完成) 大模型RHLF 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 LLM工具栈 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 容器和CPU那些事儿 kubevela源码分析 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 容器和CPU那些事儿 kubevela源码分析 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 helm 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件

学习存储

2019年11月19日

前言

许式伟:存储系统需要花费绝大部分精力在各种异常情况的处理上,甚至你应该认为,这些庞杂的、多样的错误分支处理,才是存储系统的 “正常业务逻辑”。

  1. 单机时代的文件系统,机器断电、程序故障、系统重启等常规的异常,文件系统必须可以正确地应对,甚至对于磁盘扇区损坏,文件系统也需要考虑尽量将损失降到最低。
  2. 到了互联网时代,有了 C/S 或 B/S 结构,存储系统又有了新指标:可用性。
  3. 什么样的数据会有最大的存储规模?非结构化数据。这类数据的组织形式通常以用户体验友好为目标,而不是机器友好为目标。所以数据本身也自然不是以机器易于理解的结构化形式来组织。图片、音视频、Office 文档等多媒体文件,就是比较典型的非结构化数据。
  4. 非结构化数据的存储方式,最理想的绝对不是分布式文件系统。文件系统只是桌面操作系统为了方便用户手工管理数据而设计的产物。服务端操作系统发展的初期,人们简单沿用了桌面操作系统的整套体系框架。非结构化数据最佳的存储方式,还是键值存储(KV Storage)。用于存储非结构化数据的键值存储,有一个特殊的名字,叫对象存储(Object Storage)。对象存储的出现,是服务端体系架构和桌面操作系统分道扬镳的开始。
  5. 既然对象存储是一个键值存储,就意味着我们可以通过对 Key 做 Hash,或者对 Key 按 Key Range 做分区,都能够让请求快速定位到特定某一台存储机器上,从而转化为单机问题。这也是为什么在数据库之后,会冒出来那么多 NoSQL 数据库。NoSQL 数据库的名字其实并不恰当,它们更多的不是去 SQL,而是去关系(我们知道数据库更完整的称呼是关系型数据库)。有关系意味着有多个索引,也就是有多个 Key,而这对数据库转为分布式存储系统来说非常不利

     // 对象存储 AWS S3 访问接口
     func PutObject(bucket, key string, object io.Reader) (err error)
     func GetObject(bucket, key string) (object io.ReadCloser, err error)
    

当我一开始学习mysql 的实现,我跟着mysql 脉络去学习一个db 如何实现,学习tidb 时也是。然后再回头看, 发现两者很多问题是类似的,知识在这个时候开始分层了。再去看mysql 的博客,你会发现内容是混杂的,一方面是 实现一个db的通用思想、机制, 一方面是msyql的实现细节。当学习了多个数据库实现之后,通用思想、机制提炼出来, mysql/tidb 专属细节整理一下,上帝的归上帝、凯撒的归凯撒。

分类

从单机到分布式数据库存储系统的演进 各种存储会提供什么形式的接口来供外部访问数据?

  1. 块存储,底层语义,基于(一个或多个固定大小的) block 编程;在 Linux 的 IO 软件栈中,要直接使用块存储的话就要基于 LBA 编程,因此接口较为简单朴素,再加上块存储本身处于整个存储软件栈的底层,这导致块存储使用起来并不十分友好,但具有超低的时延和超高的吞吐。
    1. 想要读写访问数据,就必须使用与存储相匹配的协议(SCSI、SATA、SAS、FCP、FCoE、iSCSI……)。
  2. 文件系统,“文件”这个概念的出现是因为“块”对人类用户来说实在是过于难以使用、难以管理了,绝大多数传统的文件存储都是基于块存储之上去实现的,有专门组织块结构来构成文件的块的表(比如FAT),在表中再加入其他控制信息,就能很方便地扩展出更多的高级功能,比如除了文件占用的块地址信息外,在表中再加上文件的逻辑位置就形成了目录,加上文件的访问标志就形成了权限,我们还可以再加上文件的名称、创建时间、所有者、修改者等一系列的元数据信息,来构成其他应用形式。PS: 文件系统解决根据文件名如何找到磁盘上的多个文件块
    1. 文件存储的访问不像块存储那样有五花八门的协议,其POSIX接口(Portable Operating System Interface,POSIX)已经成为了事实标准,诸如 Open、Write、Read 等许多操作数据的接口都能在文件系统中被找到。人们把定义文件分配表应该如何实现、储存哪些信息、提供什么功能的标准称为文件系统(File System),FAT32、NTFS、exFAT、ext2/3/4、XFS、BTRFS 等都是很常用的文件系统。
  3. 对象存储。非结构化数据,使用对象存储系统来处理视频、图片、音频等非结构化的数据。
    1. 这里的“对象”可以理解为一个元数据及与其配对的一个逻辑数据块的组合,元数据提供了对象所包含的上下文信息,比如数据的类型、大小、权限、创建人、创建时间,等等,数据块则存储了对象的具体内容。你也可以简单地理解为数据和元数据这两样东西共同构成了一个对象
    2. 常见的操作都是通过PUT实现上传和GET 实现下载等;它的表现形式,你可以认为后端存储空间无限大,你只需要使用PUT、GET方式实现上传下载即可,无需关心后端存储 ;可扩展性强,使用简单,但上传的文件,无法在对象存储中对其进行修改编辑,如果有需要,下载到本地,然后再上传,无法为服务器提供块级别的存储;产品举例,百度网盘,HDFS、FastDFS、swift、公有云的:ASW S3,腾讯云的COS,阿里云的OSS等;

关于一致性

分布式的存储系统他们实现数据复制的方法是完全一样的,该原理能查到的最早的出处是 1978 年 Lamport 的一篇论文《The Implementation of Reliable Distributed Multiprocess Systems》。不管在mysql,sqlserver关系型数据库里面,还是在redis,mongo等非关系型存储引擎里,他们都在用数据复制的状态机原理。

存储大势的发展:ACID’s Consistency vs. CAP’s Consistency

一开始数据库都是单机的,实现ACID 的特性相对简单,然后数据量开始变大,在分布式场景下可用性盖过了一致性(所谓的CAP,大部分最终选择了牺牲了部分一致性),此时一致性由上游根据业务需要来取舍。 但是ACID 的需求只是被转移却从未消失过,Avoiding lost updates, dirty reads, stale reads and enforcing app-specific integrity constraints are critical concerns for app developers,Solving these concerns directly at the database layer using the consistency provided by ACID transactions is a much simpler approach.

A Primer on ACID Transactions: The Basics Every Cloud App Developer Must Know

Consistency in CAP is a more fundamental concept — it refers to the guarantee that all members of a distributed system have a shared understanding of the value of a single data element from a read standpoint.

On the other hand, ACID’s consistency refers to data integrity guarantees that ensure the transition of the entire database from one valid state to another. Such a transition involves strict enforcement of integrity constraints such as data type adherence, null checks, relationships and more. Given that a single ACID transaction can touch multiple data elements where as CAP’s consistency refers to a single data element, ACID transactions are a stronger guarantee than CAP’s consistency.

What’s Needed For Implementing ACID?

  1. Provisional Updates (Atomicity). Transactions involve multiple operations across multiple rows. needs a mechanism to track the start, progress and end of every transaction along with the ability to make provisional updates across multiple nodes in some temporary space. Conflict detection, rollbacks, commits and space cleanups are also needed. Using Two-phase commit (2PC) protocol or one of its variations is the most common way to achieve atomicity. Achieving Atomicity
  2. Strongly Consistent Core (Consistency) 单机时不成问题,分布式场景下,因为副本问题,The transaction manager will rely on the correctness of a single operation on a single row to enforce the broader ACID-level consistency of multiple operations over multiple rows. Achieving Consistency
  3. Transaction Ordering (Isolation), For a database to support the strictest serializable isolation level, a mechanism such as globally ordered timestamps is needed to sequentially arrange all the transactions. 必须为事务界定一个顺序 Achieving Isolation
  4. Persistent Storage (Durability) Achieving Durability

上述的各种机制 在mysql、postgresql、tidb 中都有体现,实现一个机制有多种策略,有些策略只能单机用,有些策略可以推广到分布式上。分布式可以有coordinator ,也可以消灭coordinator, 通过不断地 探察本质,逐步逼近实现一个分布式ACID 的原子能力是什么?

数据平台

爱奇艺基础数据平台演进

字节跳动数据库的过去、现状与未来 字节跳动用九年时间打造出了怎样的数据平台

业务数据治理体系化思考与实践早期以问题驱动治理、凭经验治理为主。主要包括以下几个方面。

  1. 治理认知差异大,思路不统一。治理不彻底、治理经验缺乏沉淀
  2. 治理方法不标准
  3. 治理效率低、效果差
  4. 数据管治缺乏体系化,缺乏整体顶层治理方案设计,问题越来越复杂,单点难解决,不同问题的优先级无法确定。治理不符合MECE原则:每个治理方向由哪些问题组成,哪些最重要,哪些的ROI最高,哪些问题和治理动作可以合并,同一问题在数仓不同主题、不同分层的衡量标准和治理方法应该有哪些差异,都需要在体系化治理中进行考虑。

其它

图数据库存储技术及实践

图数据库的发展脉络与技术演进 未读。