技术

deepresearch梳理 mcp学习 SSE 和 WebSocket 是什么? AutoGen学习 Python ioc 从0到1构建一个db 上下文记忆 agentic chat 图数据库的一些考量 推理LLM梳理 Agent实践 LLM预训练 向量数据库的一些考量 fastapi+sqlalchemy进行项目开发 LLM微调实践 Python协程实现 Agent Functon Calling LLamaIndex入门 Multi-Agent探索 Python虚拟机 LangGraph工作流编排 Python实践 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Python一些比较有意思的库 Transformers源码学习 LangChain源码学习 通用分布式计算引擎Ray Python并发 go依赖注入 go collection gc的基本原理 golang性能分析及优化 数据湖 高性能计算与存储 Linux2.1.13网络源代码学习 《大数据经典论文解读》 三驾马车学习 Spark 内存管理及调优 Yarn学习 从Spark部署模式开始讲源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器以及defer实现 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go堆内存分配 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 线程排队 jib源码分析之细节 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 如何分发计算 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 递归、回溯、动态规划 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型和jvm内存布局 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

reward演进 大模型RLHF框架 rl框架 GPU与CUDA RL闲谈 MCTS与LLM rl与llm 从Transformer到DeepSeek bert rerank微调 大模型推理tips RAG向量检索与微调 dddfirework源码分析 RAG与知识图谱 大模型推理服务框架vLLM 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer k8s设备管理 ddd从理念到代码 如何应用LLM 小鼠如何驾驭大象(LLM)? 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 AutoML和AutoDL 特征平台 实时训练 分布式链路追踪 K8S YAML 资源清单管理方案 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从混部到统一调度 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Admission Controller 与 Admission Webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 概率论 serverless 泛谈 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 用户认证问题 资源的分配与回收——池 消息/任务队列

标签

k8s设备管理 多类型负载协调员Koordinator controller-runtime细节分析 finops学习 kubevela多集群 kubevela中cue的应用 基于k8s的工作流 kubevela源码分析 容器和CPU那些事儿 数据集管理fluid 应用管理平台kubevela karmada支持crd 多集群管理 K8S YAML 资源清单管理方案 从混部到统一调度 volcano特性源码分析 kubebuilder 学习 client-go学习 tf-operator源码分析 k8s批处理调度/Job调度 喜马拉雅容器化实践 Kubernetes 实践 openkruise学习 基于Kubernetes选主及应用 Admission Controller 与 Admission Webhook k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 深入controller openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go informer源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? Kubernetes events学习及应用 CRI——kubelet与容器引擎之间的接口 资源调度泛谈 如何学习Kubernetes 以应用为中心 kubernetes operator kubernetes扩缩容 serverless 泛谈 什么是云原生 自定义CNI IPAM docker和k8s安全访问机制 Kubernetes监控 Kubernetes 控制器模型 Kubernetes资源调度——scheduler Kubernetes类型系统 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 Kubernetes源码分析——从kubectl开始 kubernetes yaml配置 CNI——容器网络是如何打通的 当我在说PaaS时,我在说什么 《深入剖析kubernetes》笔记 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件
reward演进 deepresearch梳理 mcp学习 大模型RLHF框架 rl框架 GPU与CUDA RL闲谈 MCTS与LLM rl与llm AutoGen学习 从Transformer到DeepSeek 上下文记忆 agentic chat bert rerank微调 大模型推理tips 推理LLM梳理 Agent实践 LLM预训练 RAG向量检索与微调 LLM微调实践 RAG与知识图谱 大模型推理服务框架vLLM Agent Functon Calling LLamaIndex入门 Multi-Agent探索 LangGraph工作流编排 大模型推理服务框架 模型服务化(未完成) 大模型Post-Training 大模型训练 大模型推理 从Attention到Transformer 下一个平台Agent 激发LLM涌现——提示工程 LLM微调理论 大佬沉思 LLM外挂知识库 LLMOps 多模态LLM Transformers源码学习 LangChain源码学习 如何应用LLM 小鼠如何驾驭大象(LLM)? AutoML和AutoDL 特征平台 实时训练 tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 推荐系统embedding原理及实践 机器学习中的python调用c 机器学习训练框架概述 tensornet源码分析 大模型训练和推理 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 从RNN到Attention pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 推理服务 mpi 学习pytorch 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台梳理 tensorflow学习 kaggle泰坦尼克问题实践 神经网络模型优化 概率论 直觉上理解深度学习 如何学习机器学习 深度学习泛谈

reward演进

2025年04月12日

简介(未完成)

在使用RL训练LLM的一个限制是奖励的计算。在模型输出可通过代码或某种测试验证的场景下,奖励更容易定义,我们可以提示模型,给出答案,让它运行并找到解决方案。这让RL无限训练模型成为可能,从而产生神奇效果。在输出不易验证的开放领域,我们通常训练奖励模型来判断输出。有不少研究表明这会导致”Reward Hacking”现象,模型学会输出内容以获得高奖励,而输出并不是我们想要的。这种情况下就不能使用RL训练模型。

DeepSeek-GRM

过去几个月 DeepSeek-R1 引领的 RL 训练范式,基本上是基于 Rule-based 奖励的,也就是说,奖励模型(RM)本身非常简单,这存在一定的局限性——对数学这类有标准答案的任务比较友好,但泛化到其他领域有难度。最近,DeepSeek 发布了新论文,尝试找到一个更「通用」的 RM 训练方法:

  1. 提出采用「逐点生成式奖励模型」(Pointwise Generative Reward Modeling)范式,因为它在处理不同输入类型时更灵活,并具有推理时扩展的潜力。
  2. 核心贡献是一种名为「自我原则化批判调优」(Self-Principled Critique Tuning, SPCT)的新学习方法。SPCT 利用在线强化学习(RL),训练 GRM 自适应地生成「原则」(Principles)来指导评分标准,并生成「批判」(Critiques)来给出具体评分,从而提高了奖励的质量和可扩展性。
  3. 此外,论文还提出了通过并行采样和引入「元奖励模型」(Meta RM)来指导投票过程,以更有效地利用增加的推理计算。

对于强化学习, 核心是评判多个答案的好坏, 因此Reward Model的设计就很关键了,作者将Reward生成的范式(Reward Generation Paradigms)分为了3类,

  1. 标量(Scalar): 这种范式对给定的Query & Response计算出一个标量分数作为奖励.
  2. 半标量(Semi-Scalar):这种范式类似于购物软件的评论, 不光要采用标量值打分,还有一段评论, 可以用来提取给出该打分的原因.
  3. 生成式(Generative): 这种方式会生成一段文本式的评论(Critique)作为奖励, 奖励值可以从文本内提取, 当然也可以通过一些格式要求,把奖励的分值写在评论中. 然后是评分模式(Scoring Pattens)
  4. PointWise: 独立的给每一个回复评分
  5. Pairwise: 对两个回复之间进行相对比较评分.

然后是这几种方法的组合, 其实最关键的是最后两行. 基于标量的区分度有限, 无法做到Inference-Time Scale, 然后对于回复的多种情况(单个/多个评分)即Input Flexible, 而在搜索的过程中Pair-Wised无法实现对单个和多个回复(两两Pair-wised也很复杂)的比较. 基于这些原则最后选择了PointWise GRM(c)+(i)的方式.

核心洞察:原则 (Principles) 的重要性。研究者发现,如果能提供「好的」原则(评价标准),即使是现有的 LLM 也能更好地生成奖励判断。这启发了他们:提升 RM 性能和可扩展性的关键可能在于提升 原则生成 的质量和 基于原则进行批判 (Critique) 的准确性。让 GRM 自己学会根据输入的查询和回答,动态地生成合适的原则,并基于这些原则生成准确的批判。

  1. 思路 : 把原则的生成也看作是模型生成任务的一部分。然后设计一套学习流程来优化这个「生成原则 + 生成批判」的过程。
  2. 实现可扩展性:
    1. 通过 SPCT 训练,模型学会了生成原则和批判。在推理时,可以通过多次采样,让模型生成多套不同的原则和相应的批判。
    2. 直觉 : 如果每次采样都能从略微不同的角度(原则)来审视回答,那么综合多次采样的结果(通过投票或更复杂的聚合方式),就能得到更全面、更鲁棒、更细粒度的最终评分,从而实现推理时性能的提升。

Self-Principled Critique Tuning (SPCT):

  1. 阶段一:拒绝式微调 (Rejective Fine-Tuning - Cold Start)
    1. 目的 : 让模型先学会生成符合格式要求、覆盖多种输入的原则和批判。
    2. 数据 : 通用指令数据 + 从预训练 GRM 采样生成的「轨迹」(包含原则 + 批判 + 分数)。
    3. 采样策略 : 对每个查询和回答,采样 $N_{RFT}$ 次。
    4. 拒绝策略 (Rejection Strategy):
      • 拒绝那些预测分数与真实标签不一致的轨迹(判断错误)。
      • 拒绝那些所有 $N_{RFT}$ 次采样都预测正确的样本(太简单,模型已掌握)。
    5. 提示采样 (Hinted Sampling): 对于模型难以正确评分的样本,在输入中提示哪个回答是最好的,期望模型能生成与提示一致的批判。这有助于产生更多「正确」的训练数据,但也可能导致模型「抄近路」(shortcut learning),不去真正理解而是依赖提示。
  2. 阶段二:基于规则的在线强化学习 (Rule-Based Online RL)
    1. 目的: 进一步优化 GRM,使其生成的原则和批判能更有效地区分最佳回答,并学习可扩展的行为。
    2. 算法: 使用 GRPO
    3. 奖励信号 : RL 的奖励不是来自人类,而是来自一个简单的规则:如果 GRM 生成的批判所对应的分数能够正确地识别出哪个回答是最好的(根据数据集的真实标签),则给予正奖励 (+1),否则给予负奖励 (-1)。
    4. KL 惩罚: 加入 KL 散度惩罚项,防止模型在 RL 训练中偏离原始模型太远,保持生成的多样性和遵循指令的能力,避免模式崩溃 (mode collapse) 和严重偏见。作者发现需要较大的 KL 系数 ($\beta=0.8$) 来保证稳定性。

SPCT:DeepSeek 的「通用」奖励模型训练方法 给出了详细解读和伪代码