技术

go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 神经网络系列笔记 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

混部 RNN pytorch弹性分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano 特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 《推荐系统36式》笔记 资源调度泛谈 系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 《聊聊架构》 书评的笔记 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


2021年终小结

2021年01月18日

简介

沟通

如何做好技术 Team Leader?

目标协同与组织协同,组织协同的力度一定高于目标协同。

21年碰到一个事儿,要推容器化,跟很多合作方协同效率很低,方案来回反复。这个问题怎么解决? 或者降低一下沟通效率? 发起了一个容器训练营,给大家具体的讲一讲,把大家的认知水平拉齐。要跟所有的同学达成共识才能前进。

如何用“心流”提升编码工作效率?会议往往是异步沟通无效的体现。另外,根据 Stack Overflow 的调研报告,几乎一半的开发者表示他们在遇到问题时会打电话给同事。为了减少会议和答疑,一个建议是持续地更新和完善文档:更好的文档可以帮助你更快地回答同事的问题,并减少被打扰的可能性。

技术

我对技术架构的理解与架构师角色的思考每时每刻都在发生技术的升级和变革,需要持续不断地学习,才能对老的架构有新的认识,对于老问题产生新的解法。为什么你能解决这个问题,并且能解决这一类问题?一定是需要你看的多,想的多,这背后是大量的实践和知识的积累,并且是站在过去的肩膀上。 架构师需要什么样的能力?

  1. 发现问题,
    1. 对于一个局部/全局的问题,需要有发现的眼光,更应该有发现未发生问题的能力
    2. 每天都会面对很多问题,哪些需要治标,哪些需要治本,这个是发现问题的基本判断力。
  2. 定义/分析问题。将发现的问题,进行抽象和归纳,定义出问题的基本要素,同时定义问题的短期和长期方案,推进技术的进步。
  3. 解决问题
    1. 制定问题的实施路径和解决方案,怎么把这个问题说清楚,切中问题的点,协同团队和上下游推进问题的解决
    2. 架构师需要能救火,但不仅仅是救眼前的火,更应该救未来的火。

技术的广度非常依赖于积累。你一定要带着问题去想,这个时候你才有记忆力,有了积累,慢慢的你技术的广度就会越来越深。

徐文浩:在公司里,我每天在做的,其实主要就是两件事情。

  1. 一件事情,我称之为“让事情按次发生”,主要是规划和推动公司里想要做的事情,推动产品结合业务往前走。
  2. 另一件事情,我称之为“面对问题,解决问题”,主要是给各种突发的、意料之外的问题找解决办法。

滴滴曹乐:如何成为技术大牛?

  1. 刻意练习包含了三个步骤。第一,找到你要学习的这个领域体系的范式(pattern);第二,针对每个范式刻意的反复学习和练习;第三,及时反馈。正确的学习方法是把打羽毛球拆解成步法和手上动作,小碎步,米字步,正反手挑球,放网,正手和头顶高远球吊球杀球等(寻找pattern),然后针对每一个动作反复练习(刻意练习),然后请教练或者录下来看视频纠正自己的动作(及时反馈);而错误的学习方法是,上来就盲目找人打比赛,以赛代练,这样的进步是很慢的,而且错误的动作形成习惯以后未来反而很难纠正。
  2. 工作本身就如此繁忙了,哪里能抽出足够多的时间去学习?工作本来就应该是学习的一部分,是学习中的实践和及时反馈的部分。这里一个常见的误区是,学习的内容和工作的领域没有太多直接的关系。我以前曾经花了非常大的功夫去读Linux内核的源代码以及很多相关的大部头,几乎花掉了我将近两年的所有空闲时间,然而在我这些年的工作里,几乎是没有用处的,最多就是有一些“启发”,ROI实在是太低了,现在也忘得差不多了。如果把学习分成从书本中学,和从工作中学这两种的话,那毫无疑问,工作中的“知识密度”,比起书本的“知识密度”,肯定是要低很多的,因为书本里的知识,那都是人家从他们的工作中抽象总结出来的。这也是为什么大家普遍觉得日常工作“琐碎”。然而工作中每个点滴的琐事与平凡,都是可以抽象总结成为方法论的,更别说工作所在的领域自身的博大精深了。从日常工作中学习的秘诀,就是“行动中思考”。
  3. 对于每一个软件工程师,最重要的两个能力,是写代码的能力和trouble shooting的能力。
    1. 提高写代码的能力的核心,首先在于坚持不断的写,但更重要的,在于每天,每周,持续不断的review自己之前的代码;同时,多review牛人写的代码。一旦觉得自己之前的代码不够好,就立刻复盘,立刻重构。更重要的是,多思考自己代码和好的代码之间不同之处背后的为什么,通常这就是为什么这些代码更好的背后的秘密。
    2. 要提高trouble shooting的能力,关键在于要深度复盘自己遇到的每一个问题,包括线上的,包括测试发现的,寻找每一个问题,每一次事故背后的root cause,并且思考后续如何避免同类问题,如何更快的发现同类问题。要对团队内外遇到的所有问题都要保持好奇心
    3. 构建相对完整的当前技术领域的知识体系。一方面是在日常工作中,对每一个接口设计,每一个逻辑,每一个模块、子系统的拆分和组织方式,每一个需求的技术方案,每一个系统的顶层设计,都要反复思考和推敲,不断地复盘。另一方面,需要大量广泛地学习行业内相似系统的架构设计,这其实就是开天眼。除了技术领域本身外,架构师需要非常了解业务上是如何使用我们的系统的,否则非常容易over design,陷入技术的自嗨中
  4. 很多时候技术上绕不过去的坎,可能非常复杂的实现,往往只需要上层业务稍微变通一下,就完全可以绕过去。对于一个需求,如果他给出了好几个可行的方案,说这些方案也可以,那些方案也可以,往往说明他在架构师的路上还没有完全入门。架构师的难点不在于给出方案,而在于找到唯一的那一个最简单优雅的方案。

总结起来看,行动中思考,就是始终保持好奇,不断从工作中发现问题,不断带着问题回到工作中去;不断思考,不断在工作中验证思考;不断从工作中总结抽象,不断对工作进行复盘,持续不断把工作内容和全领域的知识交叉验证,反复实践的过程。在工作所在的技术和业务领域中刻意练习,加上行动中思考,就是成为技术大牛的秘诀。其实在成为技术大牛的路上,方法反而是没那么重要的。真正困难的,在于数年,数十年如一日的坚持。太多人遇到挫折,遇到瓶颈,就觉得手头的事情太乏味枯燥,就想要换一个方向,换一个领域,去学新的技术,新的东西。而真正能够成为大牛的,必须是能够青灯古佛,熬得住突破瓶颈前长时间的寂寞的,必须是肯下笨功夫的聪明人。因此,和坚持相比,方法其实并没有那么重要。

管理

研发管理

聊一聊在阿里做了 8 年研发后,我对打造大型工程研发团队的再思考很多项目在做架构设计、代码设计的时候,是没有考虑后续小步快跑的,不能小步快跑地添加新功能、解决新需求的话,就会经常性导致部分需求做了一半要延期的时候,根本停不下来,这个版本根本无法临时放弃需求而继续发版;更严重的是,需求和需求之间还是强耦合的,一个需求做不完,其他需求也不能正常发版。这都是实实在在的技术问题、代码问题,而不是管理问题。

很多研发主管都喜欢有事没事在钉钉、微信里询问一下具体的工作进度,或者拉个会议对一下进度,所以 “已读 + ding 一下“ 对他们来说是一个很好的功能。我们非常不鼓励这种依赖即时通信工具或会议的方式来沟通、了解开发进度,这种方式非常同步,就和同步调用一样。正确的做法,应该是开发同学每天根据自己的情况及时在项目管理工具对自己的任务进行进度更新和总结反馈,研发主管自己按需关注任务的研发进度和情况,彼此没事不要相互打扰。

管理规则与管理责任

梁汝波:10万员工的组织如何保持活力? 在绩效强制分布的情况下,管理者和一个绩效不够好的同学沟通,可能会这么说:“其实你表现挺好的,但是没有办法,公司有绩效分布的要求,这次只能委屈你一下。”类似这样的情况,其实是管理者没有把真正的管理责任承担下来,而是把压力转到规则之上,这样只是完成了一个管理动作,并没有起到管理效果。我们的做法是,让管理者对自己的管理决策负责,虽然这会让管理者在挺多时候处在一个有些拉伸、不够舒适的状态。

另一个挑战是,由于规则少,特别是明确的规则很少,大家在做决策时就要做很多考虑,要根据具体情况来进行决策。大家要为这些决策负责,经常需要通过讨论、会议,在更大范围内对齐,这样不仅大家的决策压力大,效率也不高。这也让很多人在管理活动中一直处在一个不舒适的状态里。管理者会很有动力去推动公司建立更多更明确的规则,这股力量像重力一样,一直在把公司往更多规则的方向上拉。但另外一方面,我们在现实世界遇到的管理问题复杂度很高,我们没有办法通过一组规则去控制、去刻画或者去应对这些管理的复杂性,我们需要留有弹性,让管理者能够做出合理的管理决策。这个度的把握是很难的,特别是在组织快速增长时,既要保证管理的有效性,又要做到公司不因管理低效而瘫痪,我觉得这也是我们一直在面临的挑战。

在一个大规模的、多元业务且快速发展的全球化组织里,如何做到可延展并且有效的管理?目前字节的做法是:通过文化来增加共识,减少规则;通过基本管理机制来实现管理效率;通过让管理者承担起管理职责来保证管理的有效性;通过数据积累和透明来实现管理反馈和迭代;通过工具系统来支撑这些的实现。在这个过程中,我们要抵抗组织的重力,一直处在拉伸的状态。

cto

CTO就是要给CEO扫清障碍和风险在波浪式发展过程中,技术在每个阶段起的作用不一样。在入轨的阶段,CTO应该是整个公司业务一号位班子的成员,是支持一号位的二号位,班子一起看清方向,把业务带入正轨。一旦入轨之后,业务进入快速增长期,CTO的核心不是看方向,而是怎么做好技术,这时首席架构师会变得非常重要,技术让业务更高速增长、加速成长,业务不要被技术拖慢增速。CTO和团队在一起要有一个面向未来的思考,不只是当下与业务的连接。未来是什么,关键的路径是什么,核心的几场仗是什么,这是CTO的牵引力。面对任何技术风险不能只是看,要亲自去试,需要公司投入一些有价值的浪费。

中台的优点在于可以减少很多重复建设,让业务可以基于中台快速创新,因为重复建设的繁忙约等于效率低下。但阿里巴巴的中台已经非常完善了,开始进入了另外一个阶段。当我做一个新业务的时候,我需要跟这么多中台打交道,需要他们去支撑我,过程中如果有任何一个中台支持不能到位,我的业务可能就做不成。我们现在开始大力推动中台能力进一步升级,改善中台的交付方式,把中台再升级。这里涉及到很多技术架构的变化。

前台,面向业务的,为客户赢;中台,是能力中心,中台的客户是前台,让前台更加高效,让前台更有竞争力;底层后台,是强调技术先进性的,确保业务永续。这个组织每一层都是独立的业务经营单元,现在我们在做一件事情,让每个独立的业务经营单元都有CTO。这个CTO会对这个业务经营单元负全责。实现管理机制的核心就是把每一层之间的界面定义清楚。

CTO的一个核心工作,是怎么能够让自己不要成为团队的天花板,而是把自己当成团队的地板,用人做事。成为CTO还是用人做事为主,而不是做事用人为主。

如何做业务

从开发视角看数据分析

发了20亿红包的抖音春晚团队,是如何工作的?

不同领域的相通的创新之道-读《如何解决复杂问题》

时代

陆奇:这是历史上最大的一次市场机会!

  1. 科学的发展有四个范式
  2. 价值的本质是什么?技术的本质是什么?
  3. 技术发展的(无尽)前沿:结构、体系、趋势
  4. 需求的结构、体系和趋势
  5. 技术驱动创新时代的职业选择趋向
  6. 把握好创业公司的发展路径

其它

关于写文章的一点经验写文章最重要的一个读者其实是自己,只要写出来的内容自己觉得满意,觉得表达的是自己真实的想法,能够打动自己即可,不一定非要尽善尽美。有效的输出/成果是成长的唯一指标。所以很多人就不要总觉得自己很有内涵了。

所有来自“事”的困难都可以用态度解决,所有来自“人”的困难都可以用换位思考解决。

刚带团队的困惑:挑战、过程管理是否意味着不信任?

成长也有方法论

人生商业模式