技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


缓存系统

2015年06月26日

简介

在计算机和网络领域,缓存无处不在。可以这么说,只要硬件性能不对等的地方都会有缓存的身影。

缓存那些事

缓存系统

使用缓存系统,最理想的效果是:应用系统尽量只与缓存系统交互,只有在查询缓存失败时,才访问数据库。进而,将读写压力从数据库转移到缓存系统上。

缓存系统有以下几类:

  1. 作为一个组件存在(或者说,本地缓存。比如一个jar提供的java类)
  2. 单机的、独立的应用
  3. 跨主机的、独立的应用

一个缓存系统应该考虑如下特性:

  1. 是否可以线性扩展,即通过增加主机,来增加缓存系统的存储能力,这涉及到分布式缓存系统。一旦涉及到分布式缓存系统,那么涉及到
    • 如何将缓存的数据均摊到所有缓存节点
    • 如果某个节点失效,如何处理
  2. 线程安全,在线程操作时,维护数据的一致性
  3. 当实际数据发生改变时,如何及时感知并更新缓存
  4. 如果缓存系统容量一定,当添加新的数据时,没有剩余空间,如何处理?数据是否有有效期?
  5. 最重要的一点,不能太复杂,如果访问延迟稍高,缓存系统便失去了存在的意义。

缓存系统与数据库的一致性

  1. 数据加入缓存

    • 客户端查询缓存,如果缓存中没有,则查询数据库,并将查询结果加入到缓存中。
    • 独立的定时任务 负责数据库与缓存之间的数据同步
  2. 数据从缓存清除或更新

    • 客户端在向数据库写入数据的同时,告诉缓存该数据应失效
    • 缓存中数据设置过期时间

缓存系统的数据模型

很多事情联系起来想很有意思,比如rpc,跨主机进程通信。然后一些大牛搞出redis,可以理解为跨主机访问内存,360推出一个pika,可以理解为跨主机访问磁盘(支持redis协议)。

跨主机通信,当然免不了网络通信协议的一些约定,这不是本文的重点,所以不多谈。不管跨主机访问内存还是磁盘,都不是提供一个byte[]让客户端随便用,而是像rpc一样,传输一些约定好的数据结构。区别是,rpc传输的数据结构描述了调用信息,redis的客户端与服务端传输的数据结构是为了存储和使用。

把一些数据结构存在本机或存在远程主机,有一些隐含的意味:

  1. “本机的”数据结构包括:基本数据类型,复合类型(string,list,map等)。基本数据类型往往用不着跨主机存储,因为不值当。
  2. 对于本地访问内存而言,访问一个数据结构要指明两个要素:内存地址和类型。内存地址说明去哪取数据,类型说明取多少数据,取出的数据如何处理。远端访问内存类似,只不过”地址“不再是一个内存地址,而是一个具备唯一性的key,由远端主机完成key到该主机的内存地址的映射。

上述逻辑或许能够解释,很多类似redis的工具为什么是key-value的,并且value可以是各种数据结构。

缓存系统带来的一些问题

  1. 穿透,主要有两种情况

    • 比如系统刚启动时,缓存中没有数据,突如其来的大量请求直接冲过缓存访问数据库
    • 对于一个热门数据,缓存中没有,在第一个线程还未完成“查询数据库,写入缓存”过程时,便有多个线程冲过缓存访问数据库

    解决办法主要是做请求合并

  2. 非法查询,缓存中存的大多数是有效的数据,那么对于一个非法的数据(或者说合法,但数据库中没有),缓存中没有,则查询压力还是由数据库承担。

不同位置的缓存

本地缓存

在java中,经常拿来当缓存用的是HashMap。不过,建议使用WeakHashMap,而不是HashMap,当然,更好的选择是使用框架,例如Guava Cache Guava 学习笔记

public void TestLoadingCache() throws Exception{
    // Cache 类更加灵活
    LoadingCache<String,String> cahceBuilder=CacheBuilder
    .newBuilder()
    .build(new CacheLoader<String, String>(){
        // 如果key值不在缓存中,则调用该方法获取key的实际值
        @Override
        public String load(String key) throws Exception {        
            String strProValue="hello "+key+"!";                
            return strProValue;
        }
    });  
}

使用时,事先设定缓存的大概容量,可以有效地提高性能。

2018.12.02 补充:guava cache 的清理逻辑 When Does Cleanup Happen?

Caches built with CacheBuilder do not perform cleanup and evict values “automatically,” or instantly after a value expires, or anything of the sort. Instead, it performs small amounts of maintenance during write operations, or during occasional read operations if writes are rare.

The reason for this is as follows: if we wanted to perform Cache maintenance continuously, we would need to create a thread, and its operations would be competing with user operations for shared locks. Additionally, some environments restrict the creation of threads, which would make CacheBuilder unusable in that environment.

Instead, we put the choice in your hands. If your cache is high-throughput, then you don’t have to worry about performing cache maintenance to clean up expired entries and the like. If your cache does writes only rarely and you don’t want cleanup to block cache reads, you may wish to create your own maintenance thread that calls Cache.cleanUp() at regular intervals.

If you want to schedule regular cache maintenance for a cache which only rarely has writes, just schedule the maintenance using ScheduledExecutorService.

你对缓存设置一个最大容量(entry/key的个数)之后, guava cache 只有在write 操作时才会去清理 过期的expire。如果是读多写少的业务,read 操作也会触发清理逻辑occasionally。在一些场景下,guava cache put the choice in your hands,所以不可无脑使用。

单机缓存系统

在不考虑任何异常、简化特性的情况下,以下Go代码便可以实现一个简单的缓存系统。

服务端

package main 
import (
    "fmt"
    "github.com/gorilla/mux"
    "net/http"
    "strings"
) 
var m map[string]string                      //缓存key-value
func main() {
    m = make(map[string]string, 10)
    r := mux.NewRouter()
    r.HandleFunc("/", HomeHandler)           // 将客户端发来的请求交给HomeHandler处理
    fmt.Println("listen...")
    http.ListenAndServe(":8080", r)
}    
func HomeHandler(rw http.ResponseWriter, r *http.Request) {  
    // 解析客户端发来的命令
    argStr := r.RequestURI
    argStartIndex := strings.LastIndex(argStr, "?") + 1
    args := strings.Split(argStr[argStartIndex:], "|")
    for _, arg := range args {
        fmt.Println(arg)
    }
    command := args[0]
    // 处理命令
    switch command {
    case "get":
        fmt.Fprintf(rw, "%s = %s\n", args[1], handleGet(args[1]))
    case "set":
        handleSet(args[1], args[2])
        fmt.Fprintf(rw, "%s = %s\n", args[1], args[2])
    default:
        fmt.Println("command error")
    }
}
func handleGet(key string) string {
    if val, ok := m[key]; ok {
        return val
    }
    return ""
}
func handleSet(key, val string) {
    m[key] = value
}

客户端

package main   
import (
    "flag"
    "fmt"
    "io/ioutil"
    "net/http"
    "strings"
)
func main() {
    flag.Parse()
    reqStr := strings.Join(flag.Args(), "|")    
    fmt.Printf("reqStr = %s\n", reqStr)    
    httpGet(reqStr)    
}    
func httpGet(reqStr string) {
    resp, err := http.Get("http://localhost:8080?" + reqStr)
    if err != nil {
        // handle error
    }  
    defer resp.Body.Close()
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        // handle error
    }  
    fmt.Println(string(body))
}

执行过程为:

$ mycache set name lqk
# “客户端”解析命令行,并向服务端发送“http://localhost:8080/?get|name”
# “服务端”解析出"get|name"并返回key为name的值
$ name = lqk

分布式缓存系统

如果cache system架在多个主机上,问题就复杂了,因为会有主机宕机,也有的新的主机加进来。因此,要尽可能(有些损失无法避免)满足以下四个特性:

  1. 平衡性,每个主机存储的key(或者说负载)都差不多
  2. 单调性,当增加新的主机时,能够将某些key(旧有的或新的)弄到新的主机上
  3. 分散性,有待进一步了解,大意是尽量避免重复存储相同的key值
  4. 负载,有待进一步了解

关键:将一个key存在哪个节点上

  • 取模算法(hash(key)%N)其弊端很明显:当某个主机宕机时,其存储的数据将无法找到(这个是任何缓存系统都无法避免的),问题是,其保有的存储地址空间也将失效(即该主机宕机后,一些key值还是会继续被映射到该主机,然后发现无法存储)。
  • 一致性哈希算法

varnish 缓存

位于服务与 nginx 之间

全站缓存

cdn位于站点和用户之间, 也是一种变相的缓存系统。看不见摸不着的cdn是啥

一致性哈希算法/就近路由算法

《分布式协议与算法实战》一致哈希本质上是一种路由寻址算法(实现上一般会有一个“路由表”,路由规则是“就近”),适合简单的路由寻址场景。

假设 key-01、key-02、key-03 三个 key,根据一致哈希算法,key-01 将寻址到节点 A,key-02 将寻址到节点 B,key-03 将寻址到节点 C。

那一致哈希是如何避免哈希算法“在节点变更的情况下要求数据迁移”的问题呢?

  1. 节点宕机。可以看到,key-01 和 key-02 不会受到影响,只有 key-03 的寻址被重定位到 A。受影响的数据是会寻址到节点 B 和节点 C 之间的数据(例如 key-03)

  2. 增加节点。key-01、key-02 不受影响,只有 key-03 的寻址被重定位到新节点 D。

使用一致哈希的话,对于 1000 万 key 的 3 节点 KV 存储,如果我们增加 1 个节点,变为 4 节点集群,只需要迁移 24.3% 的数据。当节点数越多的时候,使用哈希算法时,需要迁移的数据就越多,使用一致哈希时,需要迁移的数据就越少。当我们向 10 个节点集群中增加节点时,如果使用了哈希算法,需要迁移高达 90.91% 的数据,使用一致哈希的话,只需要迁移 6.48% 的数据。

当节点数较少时,可能会出现节点在哈希环上分布不均匀的情况。这样每个节点实际占据环上的区间大小不一,最终导致业务对节点的访问冷热不均。这个问题可以通过引入更多的虚拟节点来解决:就是对每一个服务器节点计算多个哈希值,在每个计算结果位置上,都放置一个虚拟节点,并将虚拟节点映射到实际节点。比如,可以在主机名的后面增加编号,分别计算 “Node-A-01”“Node-A-02”“Node-B-01”“Node-B-02”“Node-C-01”“Node-C-02”的哈希值,于是形成 6 个虚拟节点:

一致性哈希实现

  1. ConsistentHash 哈希环由一个 TreeMap 表示,对输入的 key 使用 TreeMap.ceilingKey(key) 找到最近的节点