技术

对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Kubernetes监控 Kubernetes 控制器模型 Prometheus 学习 容器日志采集 容器狂占cpu怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


Kubernetes 其它特性

2015年03月06日

简介

访问多个kubernetes 集群

  1. 一般情况,kubernetes 单独搭建在一个集群上,开发者通过开发机 或某一个跳板机上 通过kubectl 操作kubernetes,kubectl 会读取~/.kube/config 文件读取集群信息
  2. kubernetes 一般会有多个集群:测试环境(运行公司测试环境的服务),开发环境(用来验证新功能)==> developer 需要在本机 上使用kubectl 访问多个k8s集群

配置对多集群的访问

~/.kube/config 是一个yaml 文件,可以配置多个集群的信息

apiVersion: v1
kind: Config
clusters:
users:
contexts:

可以看到 几个核心配置都是数组

apiVersion: v1
kind: Config
clusters:
- cluster:
name: development
- cluster:
name: scratch
users:
- name: developer
- name: experimenter
contexts:
- context:
    cluster: development
    user: developer
  name: dev-frontend
name: dev-frontend
- context:
    cluster: scratch
    user: experimenter
  name: exp-scratch

Environment variables

(类似于docker container中的--link)

When a Pod is run on a Node, the kubelet adds a set of environment variables for each active Service. It supports both Docker links compatible variables (see makeLinkVariables) and simpler {SVCNAME}_SERVICE_HOST and {SVCNAME}_SERVICE_PORT variables, where the Service name is upper-cased and dashes are converted to underscores.

For example, the Service “redis-master” which exposes TCP port 6379 and has been allocated portal IP address 10.0.0.11 produces the following environment variables:(我们可以docker exec -it containerid bashPod中的一个container,使用printenv来查看其可以使用的环境变量)

REDIS_MASTER_SERVICE_HOST=10.0.0.11
REDIS_MASTER_SERVICE_PORT=6379
REDIS_MASTER_PORT=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP_PROTO=tcp
REDIS_MASTER_PORT_6379_TCP_PORT=6379
REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11

This does imply an ordering requirement - any Service that a Pod wants to access must be created before the Pod itself, or else the environment variables will not be populated. DNS does not have this restriction.

DNS

问题,为什么kubernete 需要dns服务?

我们大可不管kubernete的底层网络细节,就认为现在有一个10.100.0.0/16的网络,每个pod对应一个ip,可以相互通信。只是每个pod的状态经常变化。

每个pod提供的服务,但其状态在不断变化,所以出现了service,将ip(估计也是10.100开头的):port 与 服务绑定起来。所以我们访问一个pod,实际是访问其对应的serviceip。现在我们将所有的serviceip以及其名字servicename存在dns pod中,这就是kubernete中dns服务。

那么在其它pod中,就可以直接使用hostname:port来使用其它pod。本pod无法解析hostname时,便会去查dns pod获取ip。当然,道理是这样,但实际实现还有好多细节。

An optional (though strongly recommended) cluster add-on is a DNS server. The DNS server watches the Kubernetes API for new Services and creates a set of DNS records for each. If DNS has been enabled throughout the cluster then all Pods should be able to do name resolution of Services automatically.

For example, if you have a Service called “my-service” in Kubernetes Namespace “my-ns” a DNS record for “my-service.my-ns” is created. Pods which exist in the “my-ns” Namespace should be able to find it by simply doing a name lookup for “my-service”. Pods which exist in other Namespaces must qualify the name as “my-service.my-ns”. The result of these name lookups is the virtual portal IP.

k8s 在 etcd中的存在

/registry/minions
/registry/minions/192.168.56.102    # 列出该节点的信息,包括其cpu和memory能力
/registry/minions/192.168.56.103
/registry/controllers
/registry/controllers/default
/registry/controllers/default/apache2-controller	# 跟创建该controller时信息大致相同,分为desireState和currentState
/registry/controllers/default/heapster-controller
/registry/pods
/registry/pods/default
/registry/pods/default/128e1719-c726-11e4-91cd-08002782f91d   	# 跟创建该pod时信息大致相同,分为desireState和currentState
/registry/pods/default/128e7391-c726-11e4-91cd-08002782f91d
/registry/pods/default/f111c8f7-c726-11e4-91cd-08002782f91d
/registry/nodes
/registry/nodes/192.168.56.102
/registry/nodes/192.168.56.102/boundpods	# 列出在该主机上运行pod的信息,镜像名,可以使用的环境变量之类,这个可能随着pod的迁移而改变
/registry/nodes/192.168.56.103
/registry/nodes/192.168.56.103/boundpods
/registry/events
/registry/events/default
/registry/events/default/704d54bf-c707-11e4-91cd-08002782f91d.13ca18d9af8857a8		# 记录操作,比如将某个pod部署到了某个node上
/registry/events/default/f1ff6226-c6db-11e4-91cd-08002782f91d.13ca07dc57711845
/registry/services
/registry/services/specs
/registry/services/specs/default
/registry/services/specs/default/monitoring-grafana		#  基本跟创建信息大致一致,但包含serviceip
/registry/services/specs/default/kubernetes
/registry/services/specs/default/kubernetes-ro
/registry/services/specs/default/monitoring-influxdb
/registry/services/endpoints
/registry/services/endpoints/default
/registry/services/endpoints/default/monitoring-grafana	  	# 终端(traffic在这里被处理),和某一个serviceId相同,包含了service对应的几个pod的ip,这个可能经常变。
/registry/services/endpoints/default/kubernetes
/registry/services/endpoints/default/kubernetes-ro
/registry/services/endpoints/default/monitoring-influxdb

endpoint 换个说法,

Services without selectors

Services, in addition to providing abstractions to access Pods, can also abstract any kind of backend(service不仅可以做访问pod的桥梁,还可以做访问任何后端的桥梁). For example:

  • you want to have an external database cluster in production, but in test you use your own databases.
  • you want to point your service to a service in another Namespace or on another cluster.
  • you are migrating your workload to Kubernetes and some of your backends run outside of Kubernetes.

In any of these scenarios you can define a service without a selector:

{
  "kind": "Service",
  "apiVersion": "v1beta1",
  "id": "myapp",
  "port": 80
}

Then you can explicitly map the service to a specific endpoint(s):

{    
    "kind": "Endpoints",
    "apiVersion": "v1beta1",
    "id": "myapp",
    "endpoints": ["173.194.112.206:80"]
}

Accessing a Service without a selector works the same as if it had selector. The traffic will be routed to endpoints defined by the user (173.194.112.206:80 in this example).(以后,pod访问这个serivce的ip:80 就会被转到173.194.112.206:80了)(此时,一旦这个endpoint终止或者转移,k8s就不负责跟踪,并将specs与新的endpoint绑定了)

(serivce将请求转发到各个pod也是 “specs + endpoint”方式实现的 )

有了个这个endpoint + service,基本就解决了pod如何访问外网数据的问题。比如

etcd-service.json 文件

{
  "kind": "Service",
  "apiVersion": "v1beta1",
  "id": "myetcd",
  "port": 80
}

etcd-endpoints.json

{    
    "kind": "Endpoints",
    "apiVersion": "v1beta1",
    "id": "myetcd",
    "endpoints": ["masterip:4001"]
}

那么在pod中,就可以通过myetcd的serviceip:80来访问master主机上的etcd服务了。